allgosts.ru03. УСЛУГИ. ОРГАНИЗАЦИЯ ФИРМ, УПРАВЛЕНИЕ И КАЧЕСТВО. АДМИНИСТРАЦИЯ. ТРАНСПОРТ. СОЦИОЛОГИЯ.03.120. Качество

ГОСТ Р 50779.42-99 Статистические методы. Контрольные карты Шухарта

Обозначение:
ГОСТ Р 50779.42-99
Наименование:
Статистические методы. Контрольные карты Шухарта
Статус:
Заменен
Дата введения:
01.01.2000
Дата отмены:
Заменен на:
Код ОКС:
03.120.30

Текст ГОСТ Р 50779.42-99 Статистические методы. Контрольные карты Шухарта

ГОСТ Р 50779.42-99
(ИСО 8258-91)

ГОСУДАРСТВЕННЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

СТАТИСТИЧЕСКИЕ МЕТОДЫ

КОНТРОЛЬНЫЕ КАРТЫ ШУХАРТА

ГОССТАНДАРТ РОССИИ
Москва

Предисловие

1 РАЗРАБОТАН И ВНЕСЕН Техническим комитетом по стандартизации ТК 125 «Стандартизация статистических методов управления качеством», АО «Нижегородский научно-исследовательский центр контроля и диагностики технических систем» (АО НИЦ КД)

2 ПРИНЯТ И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Госстандарта России от 15 апреля 1999 г. № 127

3 Разделы настоящего стандарта, за исключением приложения А, представляют собой аутентичный текст международного стандарта ИСО 8258-91 «Контрольные карты Шухарта»

4 ВВЕДЕН ВПЕРВЫЕ

5 ПЕРЕИЗДАНИЕ. Июль 2004 г.

СОДЕРЖАНИЕ

Введение. 1

1 Область применения. 3

2 Обозначения и сокращения. 3

3 Основы контрольных карт Шухарта. 4

4 Типы контрольных карт. 6

5 Контрольные карты для количественных данных. 7

6 Метод управления и интерпретация контрольных карт для количественных данных. 11

7 Проверка структур на особые причины.. 12

8 Управление процессом и возможности процесса. 15

9 Контрольные карты для альтернативных данных. 17

10 Предварительные замечания перед введением контрольных карт. 19

11 Построение контрольных карт. 20

12 Примеры контрольных карт для количественных данных. 22

13 Примеры контрольных карт для альтернативных данных. 30

Приложение АПримеры формирования рациональных подгрупп. 36

Приложение ББиблиография. 38

Введение

Традиционный подход к производству, вне зависимости от вида продукции, - это изготовление и контроль качества для проверки готовой продукции и отбраковка единиц, не соответствующих установленным требованиям. Такая стратегия часто приводит к потерям и не экономична, поскольку построена на проверке пост-фактум, когда бракованная продукция уже создана. Более эффективна стратегия предупреждения потерь, позволяющая избежать производства непригодной продукции. Такая стратегия предполагает сбор информации о самих процессах, ее анализе и эффективные действия по отношению к ним, а не к продукции.

Контрольная карта - это графическое средство, использующее статистические подходы, важность которых для управления производственными процессами была впервые показана доктором У. Шухартом в 1924 г. [1]. Теория контрольных карт различает два вида изменчивости.

Первый вид - изменчивость из-за «случайных (обычных) причин», обусловленная бесчисленным набором разнообразных причин, присутствующих постоянно, которые нелегко или невозможно выявить. Каждая из таких причин составляет очень малую долю общей изменчивости, и ни одна из них не значима сама по себе. Тем не менее сумма всех этих причин измерима и предполагается, что она внутренне присуща процессу. Исключение или уменьшение влияния обычных причин требует управленческих решений и выделения ресурсов на улучшение процесса и системы.

Второй вид - реальные перемены в процессе. Они могут быть следствием некоторых определяемых причин, не присущих процессу внутренне и могут быть устранены, по крайней мере, теоретически. Эти выявляемые причины рассматриваются как «неслучайные» или «особые» причины изменения. К ним могут быть отнесены поломка инструмента, недостаточная однородность материала, производственного или контрольного оборудования, квалификация персонала, невыполнение процедур и т.д.

Цель контрольных карт - обнаружить неестественные изменения в данных из повторяющихся процессов и дать критерии для обнаружения отсутствия статистической управляемости. Процесс находится в статистически управляемом состоянии, если изменчивость вызвана только случайными причинами. При определении этого приемлемого уровня изменчивости любое отклонение от него считают результатом действия особых причин, которые следует выявить, исключить или ослабить.

Задача статистического управления процессами - обеспечение и поддержание процессов на приемлемом и стабильном уровне, гарантируя соответствие продукции и услуг установленным требованиям. Главный статистический инструмент, используемый для этого, - контрольная карта, - графический способ представления и сопоставления информации, основанной на последовательности выборок, отражающих текущее состояние процесса, с границами, установленными на основе внутренне присущей процессу изменчивости. Метод контрольных карт помогает определить, действительно ли процесс достиг статистически управляемого состояния на правильно заданном уровне или остается в этом состоянии, а затем поддерживать управление и высокую степень однородности важнейших характеристик продукции или услуги посредством непрерывной записи информации о качестве продукции в процессе производства. Использование контрольных карт и их тщательный анализ ведут к лучшему пониманию и совершенствованию процессов.

ГОСТ Р 50779.42-99 (ИСО 8258-91)

ГОСУДАРСТВЕННЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

Статистические методы

КОНТРОЛЬНЫЕ КАРТЫ ШУХАРТА

Statistical methods.
Shewhart control charts

Дата введения 2000-01-01

1 Область применения

Настоящий стандарт устанавливает основные положения по применению и интерпретации контрольных карт Шухарта (далее - карт Шухарта) и соответствующих методов статистического управления процессами.

Дополнительный материал, связанный с подходом Шухарта, а именно, использование предупреждающих границ, анализ структур тренда и возможности процессов, лишь упомянут. Кроме того, существуют другие типы контрольных карт [2].

2 Обозначения и сокращения

n - объем подгруппы, число выборочных наблюдений в подгруппе;

k - число подгрупп;

X - измеряемая характеристика качества (индивидуальные значения записываются как (Х1, Х2, Х3...)). Иногда вместо Xиспользуют Y;

- среднее значение для подгруппы, ;

- среднее средних значений подгрупп;

m - истинное среднее процесса;

Me - медиана подгруппы. Для выборки объема n, значения Х1, Х2, Хnкоторой упорядочены по возрастанию или по убыванию, медиана есть центральное значение, если n нечетно, и среднее двух центральных значений, если n четно;

- среднее значение медиан подгрупп;

R - размах подгруппы (разность наибольшего и наименьшего значений в подгруппе);

Примечание - В случае контрольной карты индивидуальных наблюдений R представляет собой скользящий размах, то есть абсолютную разность двух последовательных значений |Х1 - Х2|, |Х2 - Х3| и т.д.

- среднее значение R для всех подгрупп;

s - выборочное стандартное (среднее квадратическое) отклонение ;

- среднее выборочных стандартных (средних квадратических) отклонений подгрупп;

s - истинное внутригрупповое стандартное отклонение;

- оцененное внутригрупповое стандартное отклонение процесса;

nр - число несоответствующих единиц в подгруппе;

р - доля несоответствующих единиц в подгруппе

- среднее значение доли несоответствующих единиц

с - число несоответствий в подгруппе;

- среднее значений с для всех подгрупп;

и - число несоответствий на единицу в подгруппе;

- среднее значение и

CL - центральная линия;

UCL - верхняя контрольная граница;

LCL - нижняя контрольная граница.

3 Основы контрольных карт Шухарта

Карта Шухарта требует данных, получаемых выборочно из процесса через примерно равные интервалы. Интервалы могут быть заданы либо по времени (например ежечасно), либо по количеству продукции (каждая партия). Обычно каждая подгруппа состоит из однотипных единиц продукции или услуг с одними и теми же контролируемыми показателями, и все подгруппы имеют равные объемы. Для каждой подгруппы определяют одну или несколько характеристик, таких как среднее арифметическое подгруппы и размах подгруппы R или выборочное стандартное отклонение . Карта Шухарта - это график значений определенных характеристик подгрупп в зависимости от их номеров. Она имеет центральную линию (CL), соответствующую эталонному значению характеристики. При оценке того, находится ли процесс в статистически управляемом состоянии, эталонным обычно служит среднее арифметическое рассматриваемых данных. При управлении процессом эталонным служит долговременное значение характеристики, установленное в технических условиях, или ее номинальное значение, основанное на предыдущей информации о процессе, или намеченное целевое значение характеристики продукции или услуги. Карта Шухарта имеет две статистические определяемые контрольные границы относительно центральной линии, которые называются верхней контрольной границей (UCL) и нижней контрольной границей (LCL) (рисунок 1).

Рисунок 1 - Вид контрольной карты

Контрольные границы на карте Шухарта находятся на расстоянии 3s от центральной линии, где s - генеральное стандартное отклонение используемой статистики. Изменчивость внутри подгрупп является мерой случайных вариаций. Для получения оценки s вычисляют выборочное стандартное отклонение или умножают выборочный размах на соответствующий коэффициент. Эта мера не включает межгрупповых вариаций, а оценивает только изменчивость внутри подгрупп.

Границы ± 3s указывают, что около 99,7 % значений характеристики подгрупп попадут в эти пределы при условии, что процесс находится в статистически управляемом состоянии. Другими словами, есть риск, равный 0,3 % (или в среднем три на тысячу случаев), что нанесенная точка окажется вне контрольных границ, когда процесс стабилен. Употребляется слово «приблизительно», поскольку отклонения от исходных предположений, таких как вид распределения данных, будут влиять на значения вероятности.

Некоторые консультанты предпочитают вместо множителя, равного 3, значение 3,09, чтобы обеспечить номинальное значение вероятности 0,2 % (в среднем два вводящих в заблуждение наблюдения на тысячу), но Шухарт выбрал число 3, чтобы не давать поводов к рассмотрению точных вероятностей. Аналогично некоторые консультанты применяют фактические значения вероятностей для карт, основанных на ненормальных распределениях, таких как карты размахов и долей несоответствий, и в этом случае в карте Шухарта также используют границы на расстоянии ± 3s вместо вероятностных пределов, упрощая эмпирическую интерпретацию.

Вероятность того, что нарушение границ в самом деле случайное событие, а не реальный сигнал, считается столь малой, что при появлении точки вне границ следует предпринять определенные действия. Так как действие предпринимается именно в этой точке, то 3s контрольные границы иногда называются «границами действий».

Часто на контрольной карте границы проводят еще и на расстоянии 2s. Тогда любое выборочное значение, попадающее за границы 2s, может служить предостережением о грозящей ситуации выхода процесса из состояния статистической управляемости. Поэтому границы ± 2s иногда называют «предупреждающими».

При применении контрольных карт возможны два вида ошибок: первого и второго рода.

Ошибка первого рода, возникает, когда процесс находится в статистически управляемом состоянии, а точка выскакивает за контрольные границы случайно. В результате неправильно решают, что процесс вышел из состояния статистической управляемости, и делают попытку найти и устранить причину несуществующей проблемы.

Ошибка второго рода возникает, когда рассматриваемый процесс не управляем, а точки случайно оказываются внутри контрольных границ. В этом случае неверно заключают, что процесс статистически управляем и упускают возможность предупредить рост выхода несоответствующей продукции. Риск ошибки второго рода - функция трех факторов: ширины контрольных границ, степени неуправляемости и объема выборки. Их природа такова, что можно сделать лишь общее утверждение о величине ошибки.

Система карт Шухарта учитывает только ошибки первого рода, равные 0,3 % в пределах границ 3s. Поскольку в общем случае непрактично делать полную оценку потерь от ошибки второго рода в конкретной ситуации, а удобно произвольно брать малый объем подгруппы (4 или 5 единиц), целесообразно использовать границы на расстоянии ± 3s и сосредоточивать внимание в основном на управлении и улучшении качества самого процесса.

Если процесс статистически управляем, контрольные карты реализуют метод непрерывной статистической проверки нулевой гипотезы о том, что процесс не изменился и остается стабильным. Но поскольку значение конкретного отклонения характеристики процесса от цели, которое могло бы привлечь внимание, обычно нельзя определить заранее, как и риск ошибки второго рода, и объем выборки не рассчитывается для удовлетворения соответствующего уровня риска, то карту Шухарта не стоит рассматривать с точки зрения проверки гипотез [2, 3]. Шухарт подчеркивал именно эмпирическую полезность контрольных карт для установления отклонений от состояния статистической управляемости, а не их вероятностную интерпретацию. Некоторые пользователи применяют кривые оперативных характеристик как средства для интерпретации проверок гипотез.

Когда наносимое значение выходит за любую из контрольных границ или серия значений проявляет необычные структуры, (раздел 7), состояние статистической управляемости подвергается сомнению. В этом случае надо исследовать и обнаружить неслучайные (особые) причины, а процесс можно остановить или скорректировать. Как только особые причины найдены и исключены, процесс снова готов к продолжению работы. При возникновении ошибки первого рода можно не найти никакой особой причины. Тогда считают, что выход точки за границы представляет собой достаточно редкое случайное явление при нахождении процесса в статистически управляемом состоянии.

Если контрольную карту процесса строят впервые, то часто оказывается, что процесс статистически неуправляем. Контрольные границы, рассчитанные на основе данных такого процесса, будут иногда приводить к ошибочным заключениям, поскольку они могут оказаться слишком широкими. Следовательно, прежде чем устанавливать постоянные параметры контрольных карт, надо привести процесс в статистически управляемое состояние.

4 Типы контрольных карт

Контрольные карты Шухарта бывают двух основных типов: для количественных и альтернативных данных. Для каждой контрольной карты встречаются две ситуации:

а) стандартные значения не заданы;

б) стандартные значения заданы.

Стандартные значения - значения, установленные в соответствии с некоторыми конкретными требованиями или целями.

4.1 Контрольные карты, для которых не заданы стандартные значения

Цель таких карт - обнаружение отклонений значений характеристик (например, , R или какой-либо другой статистики), которые вызваны иными причинами, чем те, которые могут быть объяснены только случайностью. Эти контрольные карты основаны целиком на данных самих выборок и используют для обнаружения вариаций, которые обусловлены неслучайными причинами.

4.2 Контрольные карты при наличии заданных стандартных значений

Целью таких карт является определение того, отличаются ли наблюдаемые значения , R и т.п. для нескольких подгрупп (каждая объемом n наблюдений) от соответствующих стандартных значений Х0 (или m) и т.п. больше, чем можно ожидать при действии только случайных причин. Особенностью карт с заданными стандартными значениями является дополнительное требование, относящееся к положению центра и вариации процесса. Установленные значения могут быть основаны на опыте, полученном при использовании контрольных карт без априорной информации, или на заданных стандартных значениях, а также на экономических показателях, установленных после рассмотрения потребности в услуге и стоимости производства, или указаны в технических требованиях на продукцию.

Предпочтительно, чтобы установленные значения определялись на основе исследования предварительных данных, которые, как предполагается, станут типичными для всех будущих данных. Для эффективного использования контрольных карт стандартные значения должны быть сопоставимы с присущей процессу изменчивостью. Карты, основанные на таких стандартных значениях, особенно полезны для управления процессами и поддержания однородности продукции на желаемом уровне.

4.3 Типы контрольных карт для количественных и качественных признаков

В стандарте рассмотрены следующие контрольные карты:

а) контрольные карты для количественных данных:

1) карты среднего () и размахов (R) или выборочных стандартных отклонений (s);

2) карта индивидуальных значений (X) и скользящих размахов (R);

3) карта медиан (Me) и размахов (R);

б) контрольные карты для альтернативных данных:

1) карта долей несоответствующих единиц продукции (р) или карта числа несоответствующих единиц ();

2) карта числа несоответствий (с) или карта числа несоответствий, приходящихся на единицу продукции (и).

5 Контрольные карты для количественных данных

Количественные данные представляют собой наблюдения, полученные с помощью измерения и записи значений некоторой характеристики для каждой единицы, рассматриваемой в подгруппе, например длина в метрах, сопротивление в омах, шум в децибелах и т.д. Карты для количественных данных, и особенно простейшие из них (- и R-карты), - это классические контрольные карты, применяемые для управления процессами.

Контрольные карты для количественных данных имеют следующие преимущества:

а) большинство процессов и их продукция на выходе имеют характеристики, которые могут быть измерены, так что применимость таких карт потенционально широка;

б) измеренное значение содержит больше информации, чем простое утверждение «да - нет»;

в) характеристики процесса могут быть проанализированы безотносительно установленных требований. Карты запускаются вместе с процессом и дают независимую картину того, на что процесс способен. После этого характеристики процесса можно сравнивать или нет с установленными требованиями;

г) хотя получение количественных данных дороже, чем альтернативных, объемы подгрупп для количественных данных почти всегда гораздо меньше и при этом намного эффективнее. Это позволяет в некоторых случаях снизить общую стоимость контроля и уменьшить временной разрыв между производством продукции и корректирующим воздействием.

Для контрольных карт, использующих количественные данные, предполагается нормальное (гауссово) распределение для вариаций внутри выборок, причем отклонения от этого предположения влияют на эффективность карт. Коэффициенты для вычисления контрольных границ выведены при условии нормальности. Поскольку контрольные границы используются только как эмпирические критерии при принятии решений, целесообразно пренебрегать малыми отклонениями от нормальности. Благодаря центральной предельной теореме выборочные средние имеют распределение, приближающееся к нормальному с ростом объема выборки, даже когда отдельные наблюдения не подчиняются нормальному закону. Это обосновывает возможность предположения о нормальности для -карт даже при объемах выборок, столь малых как 4 или 5 единиц, взятых для проведения контроля. Если используют отдельные наблюдения для изучения возможностей процесса, истинное распределение важно. Рекомендуется периодически перепроверять выполнение таких предположений, чтобы убедиться, что используемые данные принадлежат одной совокупности. Распределения размахов и стандартных отклонений отличаются от нормального, хотя предположение нормальности использовалось при оценке коэффициентов для вычисления контрольных границ. Такие границы, как правило, приемлемы для процедур принятия эмпирических решений.

5.1 Карты средних () и размахов (R) или выборочных стандартных отклонений (s)

Карты для количественных данных отражают состояние процесса через разброс (изменчивость от единицы к единице) и через расположение центра (среднее процесса). Поэтому контрольные карты для количественных данных почти всегда применяют и анализируют парами - одна карта для расположения и одна - для разброса. Наиболее часто используют пару - и R-карту. В таблицах 1 и 2 приведены формулы контрольных границ и коэффициенты для соответствующих карт.

Таблица 1 - Формулы контрольных границ для карт Шухарта с использованием количественных данных

Статистика

Стандартные значения не заданы

Стандартные значения заданы

Центральная линия

UCL и LCL

Центральная линия

UCL и LCL

или

Х0 или m

Х0 ± Аs0

R

R0или d2s0

D1s0, D2s0

s

s0 или С4s0

B5s0, B6s0

Примечание - Заданы стандартные значения Хоили m, R0, S0 или s0.