allgosts.ru23. ГИДРАВЛИЧЕСКИЕ И ПНЕВМАТИЧЕСКИЕ СИСТЕМЫ И КОМПОНЕНТЫ ОБЩЕГО НАЗНАЧЕНИЯ23.040. Трубопроводы и их компоненты

ГОСТ Р 57949-2017 Трубы и детали трубопроводов из реактопластов, армированных стекловолокном. Методы регрессионного анализа

Обозначение:
ГОСТ Р 57949-2017
Наименование:
Трубы и детали трубопроводов из реактопластов, армированных стекловолокном. Методы регрессионного анализа
Статус:
Действует
Дата введения:
06/01/2018
Дата отмены:
-
Заменен на:
-
Код ОКС:
23.040.20, 23.040.45

Текст ГОСТ Р 57949-2017 Трубы и детали трубопроводов из реактопластов, армированных стекловолокном. Методы регрессионного анализа



ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

НАЦИОНАЛЬНЫЙ

СТАНДАРТ

РОССИЙСКОЙ

ФЕДЕРАЦИИ

ГОСТР

57949—

2017

(ИСО 10928: 2009)

ТРУБЫ И ДЕТАЛИ ТРУБОПРОВОДОВ ИЗ РЕАКТОПЛАСТОВ, АРМИРОВАННЫХ СТЕКЛОВОЛОКНОМ

Методы регрессионного анализа

(ISO 10928:2009, Plastics piping systems — Glassreinforced thermosetting plastics (GRP) pipes and fittings — Methods for regression analysis and their use, MOD)

Издание официальное

Москва

Стандартииформ

2017

ГОСТ Р 57949—2017

Предисловие

1    ПОДГОТОВЛЕН Объединением юридических лиц «Союз производителей композитов» совместно с Автономной некоммерческой организацией «Центр нормирования, стандартизации и классификации композитов» на основе собственного перевода на русский язык указанного в пункте 4 стандарта

2    ВНЕСЕН Техническим комитетом по стандартизации ТК 497 «Композиты, конструкции и изделия из них»

3    УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 16 ноября 2017 г. № 1748-ст

4    Настоящий стандарт является модифицированным по отношению к международному стандарту ИСО 10928:2009 «Трубопроводы пластмассовые. Трубы и фитинги из термореактивных стеклопластиков (GRP). Методы регрессионного анализа и их применение» [ISO 10928:2009 «Plastics piping systems. — Glassreinforced thermosetting plastics (GRP) pipes and fittings — Methods for regression analysis and their use». MOD), включая изменение Amd.1:2013, путем изменения содержания отдельных структурных элементов, которые выделены вертикальной линией, расположенной на полях напротив соответствующего текста. Оригинальный текст этих структурных элементов приведенного международного стандарта и объяснения причин внесения технических отклонений приведены в дополнительном приложении ДА.

Наименование настоящего стандарта изменено относительно наименования указанного международного стандарта для приведения в соответствие с ГОСТ Р 1.5—2012 (пункт 3.5)

5    ВВЕДЕН ВПЕРВЫЕ

Правила применений настоящего стандарта установлены в статье 26 Федерального закона от 29 июня 2015 г. N9 162-ФЗ «О стандартизации в Российской Федерации». Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе «Национальные стандарты», а официальный текст изменений и поправок — е ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ближайшем выпуске ежемесячного информационного указателя «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте национального органа Российской Федерации по стандартизации в сети Интернет ()

€> Стандартинформ. 2017

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

и

ГОСТ Р 57949—2017

Содержание

1    Область применения..................................................................1

2    Сущность метода.....................................................................1

3    Методика определения линейных взаимосвязей — методы АиВ.............................1

4    Применение методов регрессионного анализа при испытаниях и проектировании продукции.....10

Приложение А (обязательное) Порядок проектирования напорных труб

и деталей трубопроводов из реактопластое. армированных стекловолокном.......11

Приложение В (справочное) Полиномиальный анализ с использованием взаимосвязей

второго порядка..........................................................17

Приложение С (справочное) Нелинейный метод анализа....................................20

Приложение D (справочное) Расчет нижних границ доверительного и прогнозируемого

интервалов для метода А..................................................36

Приложение ДА (справочное) Оригинальный текст модифицированных структурных

элементов примененного международного стандарта.........................38

Библиография........................................................................39

ГОСТ Р 57949—2017

Введение

В настоящем стандарте приведены методы регрессионного анализа данных, полученных е ходе испытаний е течение определенного времени, и использование результатов регрессионного анализа при проектировании изделий и оценке их соответствия эксплуатационным требованиям. Для регрессионного анализа используют данные, полученные в ходе испытаний образцов в соответствии с действующими стандартами, устанавливающими методы испытаний для расчета долговременных свойств труб и деталей трубопроводов из реактопластое. армированных стекловолокном, например начального окружного предела прочности при растяжении, долговременной кольцевой деформации, химической стойкости внутренней поверхности в условиях нагружения и долговременной удельной кольцевой жесткости при ползучести или при релаксации.

Был исследован ряд статистических методов, которые можно использовать для регрессионною анализа результатов разрушающих испытаний, во многих из этих простых методов логарифмы данных должны удовлетворять следующим требованиям:

а)    должны иметь нормальное распределение;

б)    иметь линию регрессии с отрицательным наклоном;

в)    иметь достаточно высокий коэффициент корреляции {см. таблицу 1).

Исследования показали, что требования б) и в) могут быть выполнены, а требование а) — нет. так как в распределении существует асимметрия. Дальнейшие исследования методов, применимых к асимметричным распределениям, привели к принятию ковариационного метода регрессионного анализа таких данных в настоящем стандарте.

Результаты нераэрушающих испытаний, например на определение долговременной удельной кольцевой жесткости при ползучести или при релаксации, как правило, удовлетворяют всем трем требованиям. поэтому в соответствии с настоящим стандартом к ним применим более простой метод с использованием времени е качестве независимой переменкой.

Данные методы регрессионного анализа данных ограничиваются методами анализа, определенными в стандартах на продукцию или методы испытаний. Для экстраполяции и прогнозирования долговременных свойств труб и деталей трубопроводов из реактопластое, армированных стекловолокном, могут быть использованы другие методы анализа. Например, полиномиальный анализ с использованием взаимосвязей второго порядка допускается применять для экстраполяции данных долговременной удельной кольцевой жесткости при ползучести или при релаксации, особенно при анализе данных за короткий период, когда форма кривых долговременной удельной кольцевой жесткости при ползучести или при релаксации может сильно отличаться от линейной. Полиномиальный анализ с использованием взаимосвязей второго порядка приведен в приложении В. В приложении С приведен альтернативный метод нелинейного анализа. Приложения в и С имеют справочный характер, и нелинейные методы, приведенные е них, применимы только для труб и деталей трубопроводов из реактопластое. армированных стекловолокном, и могут быть не применимы при исследовании других труб.

«V

ГОСТ Р 57949—2017 (ИСО 10928:2009)

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

ТРУВЫ И ДЕТАЛИ ТРУБОПРОВОДОВ ИЗ РЕАКТОПЛАСТОВ. АРМИРОВАННЫХ СТЕКЛОВОЛОКНОМ

Методы регрессионного анализа

Fiberglass-reinforced thermosetting plastics pipes and parts of pipelines. Methods for regression analysis

Дата введения — 2016—06—01

1    Область применения

Настоящий стандарт устанавливает два метода регрессионного анализа данных, которые при преобразовании в логарифмические значения имеют нормальное или асимметричное распределение. Настоящий стандарт применяют совместно со стандартами на методы испытаний труб и деталей трубопроводов из реактопластов. армированных стекловолокном для анализа зависимости их свойств от времени. Настоящий стандарт может быть также применен для анализа других данных.

Порядок проведения испытаний для сбора данных, количество требуемых образцов и период времени сбора данных установлены в стандартах на методы испытаний труб и деталей трубопроводов из реактопластов. армированных стекловолокном.

2    Сущность метода

Регрессионный анализ проводят на основе метода наименьших квадратов, который можно адаптировать к асимметричному и/или нормальному распределениям. Используют два метода регрессионного анализа:

•    метод А: ковариационный метод с использованием взаимосвязей первого порядка;

•    метод В: метод наименьших квадратов с использованием взаимосвязей первого порядка, где в качестве независимой переменной используют время.

Методы регрессионного анализа включают в себя статистическую проверку корреляции данных и их пригодности к экстраполяции.

Экстраполяция с использованием методов регрессионного анализа позволяет продлить данные, полученные в течение 10 000 ч. для прогнозирования свойств на 50 лет. что. как правило, является максимальным временем экстраполяции.

В разделе 4 приведено применение методов регрессионного анализа при испытаниях и проектировании продукции.

3    Методика определения линейных взаимосвязей — методы А и В

3.1 Общие положения для методов А и В

Используя метод А (см. 3.2) или В (см. 3.3) строят прямую, задаваемую формулой

у-а*Ьх,    (1)

где у — десятичный логарифм значения исследуемого свойства: а — точка пересечения с осью У; b — угол наклона прямой; х — десятичный логарифм времени, ч.

Издание официальное

1

ГОСТ Р 57943—2017

3.2 Метод А — ковариационный метод

3.2.1 Общие положения

Рассчитывают переменные в соответствии с 3.2.2—3.2.5. используя формулы (2)—(4). Сумму квадратов регрессионных остатков, параллельных оси У. Qy вычисляют по формуле

у    п

где у, — отдельное измеренное значение;

У — среднеарифметическое значение по всем у|( вычисляют по формуле (5); п — общее количество результатов (соответствующие пары х(, у).

Сумму квадратов регрессионных остатков, параллельных оси X, Qx вычисляют по формуле

Q

X

К*.-*)2

л

(3)

где ж, — отдельное измеренное значение;

X — среднеарифметическое значение по всем х,, вычисляют по формуле (6).

Сумму квадратов регрессионных остатков, перпендикулярных прямой. Ожу вычисляют по формуле

где

*

(4)

л

(5)

п

хЛ\

(6)

п

Примечание — Если значение Оху больше нуля, угол наклона прямой b положительный, если меньше нуля — отрицательный.

3.2.2 Пригодность данных

Квадратичный коэффициент корреляции г2 вычисляют по формуле

Q2 О Q

(7)

Линейный коэффициент корреляции г вычисляют по формуле

Г а

(8)

Данные непригодны для анализа, если выполняется неравенство

((')

г <

(9)

Jn-2+[mf

где t(f) — (-критерий Стъюдента.

В таблице 1 приведены минимальные допустимые значения линейного коэффициента корреляции г в зависимости от количества переменных п. Значения (-критерия Стьюдента основаны на двухстороннем уровне значимости 0,01.

Таблица 1 — Минимагъные допустимые значения линейного коэффициента корреляции г

Количество переменных, л

Число степеней свободы.

(п-2)

f-фитерий Стьюделга. 1 (0.01)

Минимальное значение, г

13

11

3.106

0.6635

14

12

3.055

0.6614

2

ГОСТ Р 57949—2017

Окончание таблицы 1

Количество переменных, о

Число степеней свободы, ("-*)

1-критерий Стыолеита. 1 (0.01)

Минимальное значение, т

15

13

3.012

0.6411

16

14

2.977

0.6226

17

15

2.947

0.6055

16

16

2.921

0.5897

19

17

2.898

0.5751

20

16

2.878

0.5614

21

19

2.861

0.5487

22

20

2.845

0.5368

23

21

2.831

0.5256

24

22

2.819

0.5151

25

23

2.807

0.5052

26

24

2.797

0.4958

27

25

2.787

0.4869

32

30

2.750

0.4487

37

35

2.724

0.4162

42

40

2.704

0.3932

47

45

2.690

0.3721

52

50

2.678

0.3542

62

60

2.660

0.3248

72

70

2.648

0.3017

82

80

2.639

0.2830

92

90

2.632

0.2673

102

100

2.626

0.2540

3.2.3 Функциональные зависимости

Чтобы найти а и б в формуле (1) вычисляют Г по формуле

Угол наклона прямой b вычисляют по формуле

6«-(Г)м.

Точку пересечения с осью У а вычисляют по формуле

а = У - ь • X.

3.2.4 Расчет дисперсий

Десятичный логарифм времени до разрушения хи вычисляют по формуле

*0=|9'0.

где tu — время до разрушения, ч.

(10)

(11)

(12)

(13)

3

ГОСТ Р 57949—2017

Для каждого отдельно измеренного значения от / = 1 до п вычисляют статистические показатели: • наилучшее значение для истинного значения х, х\по формуле

К

, Г-х,+Ь (у,-а).

• наилучшее значение для истинного значения у, у’ по формуле

у/«а+Ь-х;.

Дисперсию ошибки    для х вычисляют по формуле

[к*-*)2*г.

о;

(л-2)-Г

(14)

(15)

(16)

Переменные Ей О вычисляют по формулам (17) и (16) соответственно:

6-0?

Е в * .

(17)

lQ*r

2-Г Ь о*

0 = —-НL-

(18)

п‘°*г

Дисперсию угла наклона прямой С вычисляют по формуле

С = 0{1 +Е).

(19)

3.2.5 Проверка пригодности к экстраполяции

Если прямую предполагается экстраполировать, вычисляют значение Т по формуле

Тш-*—(20)

(var&)05    С°*

Если абсолютное значение Г. то есть |Г|. равно или больше, чем применяемое значение 1-критерия Стьюдекта ty. приведенное в таблице 2 для степеней свободы (о - 2). данные пригодны для экстраполяции.

Примечание — Расчет границ доверительного интервала не требуется, но а приложении D приведен порядок расчета нижних границ доверительного и прогнозируемого интервалов (LCL и LPL соответственно).

Таблица 2 — Значения (-критерия Стыодента tv (вероятность выхода за границы доверительного интервала 2.5 %. двусторонний уровень значимости 5 %. доверительная вероятность 97.5 %)

Число степеней свободы. (п-2)

Значения Г-критерия Стыодента. гу

Число степеней свободы, <»- 2)

Значения Г-Фитерия Стыодента. Гу

Число степеней свободы. (»-2)

Значения Г-крнтерия Стыодента. 1у

Число степеней свободы, <л-2)

Значения Г-крнтерия Стыодента. Iv

1

12.7062

26

2.0555

51

2.0076

76

1.9917

2

4.3027

27

2.0518

52

2,0066

77

1.9913

3

3.1824

28

2.0484

S3

2.0057

78

1.9908

4

2.7764

29

2.0452

54

2.0049

79

1.9905

5

2.5706

30

2.0423

55

2.0040

ВО

1.9901

6

2.4469

31

2.0395

56

2,0032

81

1.9897

7

2.3646

32

2.0369

57

2.0025

82

1.9893

8

2.3060

33

2.0345

58

2.0017

83

1.9890

9

2.2622

34

2.0322

59

2.0010

84

1.9886

10

2.2281

35

2.0301

60

2.0003

85

1.9883

4

ГОСТ Р 57949—2017

Окончание таблицы 2

Число стеле-ней свободы, <л-2)

Значения (■критерия Стьюдеита, tk

Число степеней свободы, (п-2)

Значения (■критерия Стьюдеита. lv

Число степеней свободы. (п -2)

Значения (■критерия Стыодента. tv

Число степенен свободы.

(я-2)

Значения (■критерия Стыодента. 1г

11

2.2010

36

2.0281

61

1.9996

86

1.9879

12

2.1788

37

2.0262

62

1.9990

87

1.9876

13

2.1604

38

2.0244

63

1.9983

88

1.9873

14

2.1448

39

2.0227

64

1.9977

89

1.9870

15

2.1315

40

2.0211

65

1.9971

90

1.9867

16

2.1199

41

2.0195

66

1.9966

91

1.9864

17

2.1098

42

2.0181

67

1.9960

92

1.9861

18

2.1009

43

2.0167

68

1.9955

93

1.9858

19

2.0930

44

2.0154

69

1.9949

94

1.9855

20

2.0860

45

2.0141

70

1.9944

95

1.9853

21

2.0796

46

2.0129

71

1.9939

96

1.9850

22

2.0739

47

2.0112

72

1.9935

97

1.9847

23

2.0687

48

2.0106

73

1.9930

98

1.9845

24

2.0639

49

2.0096

74

1.9925

99

1.9842

25

2.0595

50

2.0086

75

1.9921

100

1.9840

3.2.6 Пример расчета

8 таблице 3 приведены исходные данные для примера расчета метода А регрессионного анализа. В настоящем примере значение исследуемого свойства обозначено безразмерной величиной V.

Таблица 3 — Исходные данные для примера расчета метода А регрессионного анализа

п

V

Уг «ev

Вреыя ft. ч

*, |9Л

1

30.8

1.4886

5184

3.7147

2

30.8

1.4886

2230

3.3483

3

31.5

1.4983

2220

3.3464

4

31.5

1.4983

12 340

4.0913

5

31.5

1.4983

10900

4.0374

6

31.5

1.4983

12 340

4.0913

7

31.5

1.4983

10 920

4.0382

8

32.2

1.5079

8900

3.9494

9

32.2

1.5079

4173

3.6204

10

32.2

1.5079

8900

3.9494

11

32.2

1.5079

878

2.9435

12

32.9

1.5172

4110

3.6138

13

32.9

1.5172

1301

3.1143

14

32.9

1.5172

3816

3.5816

5

ГОСТ Р 57949—2017

Окончание таблицы 3

Л

V

у, I9V

время Л. ч

хг 19Л

15

32,9

1,5172

669

2.8254

15

33,6

1.5263

1430

3,1553

17

33,6

1,5263

2103

3,3228

18

33,6

1.5263

589

2.7701

19

33,6

1.5263

1710

3,2330

20

33,6

1.5263

1299

3.1136

21

35.0

1.5441

272

2.4346

22

35,0

1.5441

446

2.6493

23

35,0

1.5441

466

2.6684

24

35,0

1.5441

684

2.8351

25

36.4

1.5611

104

2.0170

25

36.4

1.5611

142

2.1523

27

36.4

1.5611

204

2.3096

28

36.4

1.5611

209

2.3201

29

38.5

1.5855

9

0.9542

30

38.5

1.5855

13

1.1139

31

38,5

1.5855

17

1.2304

32

38,5

1.5855

17

1.2304

Средние:

У = 1.5301

X - 2.9305

Суммы квадратов регрессионных остатков:

Оя = 0,79812;

Оу = 0.00088:

Qxy = -0.02484.

Коэффициент корреляции: fi = 0.87999; г =0.93808.

Функциональные зависимости.

Г = 0.00110;

0 = -0.03317; э = 1,62731.

Расчет дисперсий (см. 3.2.4):

Е= 3.5202 Ю'2:

0 = 4,8422 • 10'в;

С = 5,0127 10“® (дисперсия угла наклона прямой): о\ = 5,2711 • 10-2 (диверсия ошибки для х). Проверка пригодности к экстраполяции (см. 3.2.5): л = 32; f„ = 2,0423;

Г= -0,03317 / (5,0127 • 10-*)0-5 = -14.8167:

|Г| = 14,8167 > 2,0423.

6

ГОСТ Р 57949—2017

Расчетные средние значения Vm в разные моменты времени приведены в таблице 4 и показаны на рисунке 1.

Таблица 4 — Расчетные средние значения Vm

Время ft. ч

0.1

45.76

1

42.39

10

39.28

100

36.39

1000

33.71

10000

31.23

100 000

28.94

438 000

27.55

Ос» X — логарифмическая шкала времени, ч; ось У — логарифмическая шкала значений исследуемого свойства: I —• 433 000 ч {50 лет); 2 — линия регрессии, построенная по данным таблицы 4. 3 — точка данных

Рисунок 1 — Линия регрессии, построенная по данным таблицы 4

7

ГОСТ Р 57943—2017

3.3 Метод 8 — Метод наименьших квадратов, где в качестве независимой переменной используют время

3.3.1 Общие положения

Сумму квадратов регрессионных остатков, параллельных оси У, Sy вычисляют по формуле

s,-Ito-vf.    (21>

Сумму квадратов регрессионных остатков, параллельных оси X, S, вычисляют по формуле

(22)

Сумму квадратов регрессионных остатков, перпендикулярных прямой. Sv„ вычисляют по формуле

ху

(23)

Среднеарифметическое значение по всем у-, У вычисляют по формуле (5). среднеарифметическое значение по всем х,. X вычисляют по формуле (6).

Примечание — Если значение больше нуля, угол наклона прямой Ь положительный, если меньше нуля — отрицательный.

3.3.2 Пригодность данных

Квадратичный коэффициент корреляции i2 вычисляют по формуле

_?L

5Л

Линейный коэффициент корреляции г вычисляют по формуле

(24)

г

(25)

Данные не пригодны для анализа, если значение линейного коэффициента корреляции г меньше, чем соответствующее минимальное допустимое значение линейного коэффициента корреляции, приведенное в таблице 1. в зависимости от количества переменных п.

3.3.3 Функциональные зависимости Угол наклона прямой £> вычисляют по формуле

Точку пересечения с осью У а вычисляют по формуле

а=У-ЬХ.

3.3.4 Проверка пригодности к экстраполяции

Если прямую предполагается экстраполировать, вычисляют значение М по формуле

$2

S2

ху

(«-2)SJ    '

(26)

(27)

(28)

где ^ — значение {-критерия Стьюдента. приведенное в таблице 2.

Если значение М меньше или равно нулю, данные не пригодны для экстраполяции.

3.3.5 Пример расчета

В таблице 5 приведены исходные данные для примера расчета метода В регрессионного анализа. В настоящем примере значение исследуемого свойства обозначено безразмерной величиной V.

Таблица 5 — Исходные данные для примера расчета метода В регрессионного анализа

Л

Время Т. ч

V

YtW

1

0.10

-1.0000

7114

3.8521

8

ГОСТ Р 57949—2017

Окончание таблицы 5

п

Время Т. ч

igT

V

y,W

2

0,27

-0.5686

6935

3.8410

3

0.50

-0.3010

6824

3.8341

4

1.00

0

6698

3.8259

5

3.28

0.5159

6533

3.8151

6

7,28

0.8621

6453

3.8098

7

20.0

1.3010

6307

3.7999

8

45.9

1.6618

6199

3.7923

9

72.0

1.8573

6133

3.7877

10

166

2.2201

5692

3.7552

11

219

2.3404

5508

3.7410

12

384

2.5843

5393

3.7318

13

504

2.7024

5364

3.7295

14

3000

3.4771

5200

3.7160

15

10 520

4.0220

4975

3.6968

Средние:

X- 1.4450

Y * 3.7819

Суммы квадратов регрессионных остатков:

Sxs 31.6811;

Sy = 0.0347;

Sxy - -1.0242.

Коэффициент корреляции: i2 = 0.9556: г *0.9775.

Функциональные зависимости (см. 3.3.3): а = 3.8286;

Ь - -0.0323.

Проверка пригодности к экстраполяции (см. 3.3.4):

= 2.1604;

942.21.

Расчетные средние значения Vm в разные моменты времени приведены в таблице 6.

Таблица 6 — Расчетные средние значения Vm

Время Ь. ч

0.1

7259

1

6739

10

6256

100

5808

1000

5391

10000

5005

100 000

4646

438 000

4428

9

ГОСТ Р 57949—2017

4 Применение методов регрессионного анализа при испытаниях
и проектировании продукции

4.1    Общие положения

В стандартах на методы испытаний труб и деталей трубопроводов из реактопластов. армированных стекловолокном, установлены лимитирующие требования к долговременным свойствам. Некоторые из них установлены по результатам разрушающих испытаний, например, начальный окружной предел прочности при растяжении, другие — на основании фактических или расчетных физических свойств, например долговременная удельная кольцевая жесткость при ползучести или при релаксации.

Данные свойства необходимо экстраполировать на долговременный период (например. 50 лет) для утверждения проектирования продукции или ее соответствия установленным требованиям. Экс» траполированное значение Igy, используя значения а и £>. определенные в соответствии с 3.2 или 3.3, вычисляют по формуле

lgy = a + 6'fL.    (29)

где ^ — десятичный логарифм долговременного периода, ч [для 50 лет (438 000 ч) {,_ = 5.64147].

Регрессионный анализ проводят в трех случаях в соответствии с 4.2—4.4.

4.2    Проектирование продукции

В первом случае регрессионный анализ проводят для проектирования или расчета линейки про* дукции. При этом используют данные долговременных испытаний на определение начального окруж* ного предела прочности при растяжении (1). Данные долговременных разрушающих испытаний анализируют методом А регрессионного анализа. Для проектирования также необходимо анализировать данные кратковременных испытаний [2]. Проектирование напорных труб и деталей трубопроводов из реактопластов. армированных стекловолокном, проводят в соответствии с приложением А.

4.3    Сравнение с требуемым значением

Во втором случае регрессионный анализ проводят для сравнения экстраполированного значения с минимальным требуемым значением. При этом используют данные испытаний на определение долговременной кольцевой деформации (3) и химической стойкости внутренней поверхности в условиях нагружения [4]. Данные долговременных разрушающих испытаний анализируют методом А регрессионного анализа.

4.4    Определение долговременных свойств

В третьем случае регрессионный анализ проводят для определения долговременных свойств труб и деталей трубопроводов из реактопластов. армированных стекловолокном, путем расчета экстраполированного значения, которое в дальнейшем используется производителем. При этом используют данные испытаний на определение долговременной удельной кольцевой жесткости при ползучести [5] или при релаксации [6]. Данные долговременных неразрушающих испытаний анализируют методом В регрессионного анализа.

ю

ГОСТ Р 57949—2017

Приложение А (обязательное)

Порядок проектирования напорных труб и деталей трубопроводов из реактопластов. армированных стекловолокном

А.1 Основные положения

Порядок проектирования, описанный в настоящем приложении, используют для определения минимальных рабочих характеристик давления для труб и деталей трубопроводов из реактопластов. армированных стекловолокном, изготовленных 8 соответствии с (7]. В настоящем приложении приведены рекомендуемые минимальные долговременные коэффициенты запаса прочности при растяжении относительно рабочих характеристик изделия.

Примечание — Аналогичньм порядок проектирования напорных груб и деталей трубопроводов из реак-топлэстов. армированных стекловолокном, приведен в [8] и [9].

Реактопласты, армированные стекловолокном, подвержены ползучести при прилагаемых нагрузках. Трубы и детали трубопроводов из реактопластов. армированных стекловолокном, испытывают для определения характеристик регрессионного анализа, поскольку эти характеристики зависят от технологии производства и используемого сырья.

Порядок проектирования, приведенный в настоящем приложении, основан на принципе производства, при котором трубы и детали трубопроводов из реактопластов. армированных стекловолокном, изготавливают по определенному проекту с использованием определенного технологического процесса и определенных материалов, а затем испытывают в соответствии с методом регрессионного анализа, например в [1]. с аналогичными характеристиками регрессионного анализа. Данные, полученные в ходе испытаний, анализируют с помощью метода А настоящего стандарта. Угол наклона прямой, рассчитанный в результате регрессионного анализа, представляет собой общую характеристику регрессионного анализа изделий, изготовленных из аналогичных материалов с использованием аналогичных технологических процессов. Для изделий, изготовленных из аналогичных материалов с использованием аналогичных технологических процессов, характеристики регрессионного анализа сильно не отличается, то есть изделия разного диаметра и толщины дают схожие результаты.

Свойства изделий из реактоппастов. армированных стекловолокном имеют внутреннюю изменчивость, но предполагается, что на производстве применяется система контроля качества, позволяющая определить коэффициент вариации и приемлемый уровень качества для начального окружного предела прочности при растяжении.

А.2 Минимальные значения долговременных коэффициентов запаса прочности

при растяжении

Большинство напорных груб и деталей трубопровода из реактопластов. армированных стекловолокном, укладывают под землей, при этом они подвергаются воздействию нагрузок от внутреннего давления и испытывают деформацию в результате нагрузки от веса грунта и движения транспорта. Учет этих комбинированных нагрузок и анализ влияния этих значений на вероятность разрушения в течение 50 лет показал, что комбинированный коэффициент запаса прочности, т^,. должен быть не менее 1.5.

Минимальное значение кольцевой деформации зависит от жесткости трубы, которая определяет пределы деформации из-за изгиба. Зная минимальное приемлемое значение комбинированного коэффициента запаса прочности r|ha| и условия изгиба, рассчитывают минимальное приемлемое значение коэффициента запаса прочности при растяжении Т1г Используя эти принципы, были рассчитаны долговременные коэффициенты запаса прочности при растяжении, относящиеся к 97.5 % LCL и средним значениям (ti, ^ 97 5%LCL и ti( u ^ соответственно). которые приведены 8 таблице А.1.

11

ГОСТ Р 57949—2017

Таблица А.1 — Рекомендованные минимальные значения долговременных коэффициентов запаса прочности при растяжении \PN.S7.s%iCl и \ph*w

Коэффициент запаса прочности

PN 32

PN2S

PN 16

PN 10

PN 6

PN 4

PN 2.5

Минимальный долговременный коэффициент запаса прочности при растяжении, относящийся к 97.5 % LCL n<.PN.B7.5%LCL

1.3

1.3

1,45

1.55

1.6

1.65

1.7

Минимальньм долговременный коэффициент запаса прочности при рестяжети. относящийся к средним значениям г|^

1.6

1.6

1.8

1.9

2.0

2.05

2.1

Примечание — r|(PN срШ110|[ основан на постоянном комбинированном коэффициенте запаса прочности (от давления и изгиба), который равен 1.5. Дополнительные положения см. в (10].

Минимальные долговременные коэффициенты запаса прочности при растяжении, приведенные в таблице А.1, применяют, когда коэффициент вариации У для среднего начального разрушающего давления Р0 ср0Д|И0 не превышает 9 %. Если коэффициент вариации более 9 %, то применимый минимальный долговременный коэффициент запаса прочности при растяжении (q, 97.5%lcl)hoo*w или (П).рц срелнес)но»ый вычисляют по формулам:

>    1-9 0.01 1.96

1Л,РН.вТЗЧ1С1Цвий =    001 tften1PN»T.sm.ci-    (А1>

Г^Н.СрОАиМ

1 - В 0.01 196 1 - у

(А.2)

где nfPN в7 54Ц.С1.* Лг.рм ctbqhw) — минимальные долговременные коэффициенты запаса прочности при растяжении из таблицы А.1;

У — коэффициент вариации для среднего начального разрушающего давления ^•.среднее- установленный по результатам работы системы контроля качества предприятия при регулярном тестировании труб определенного класса давления. %.

А.З Определение коэффициента регрессии давления

Характеристики регрессионного анализа груб и деталей трубопроводов из реактопластое. армированных волокном, определяют на образцах, отобранных произвольно из труб одного класса давления и жесткости, в ходе серий испытаний по определению начального разрушения и характеристик регрессионного анагмза для давления. Часть образцов используют в долговременных испытаниях на определение характеристик регрессионного анализа для давления в соответствии с [1]. часть — для определения среднего начального разрушающего давления (р0.с(*анее)8 соответствии с (2J.

На основе результатов испытаний по определению долговременного давления определяют линию регрессии с использованием метода А настоящего стандарта. По проецируемым точкам линии регрессии в точках 0,1 ч (6 мин.) и 438 000 ч (50 лет) определяют значения разрушающего давления РвиР50 (см. рисунок А.1).

Коэффициент регрессии давления Rrp определяют по формуле

%

(А.З)

12

ГОСТ Р 57949—2017

Ось X — логарифмическая шкапа времени, ч, ось У — логарифмическая шкала давления, бар’':

J — 436 000 ч (S0 лег): 2 •— результаты испытаний по определению долговременного давления: 3—6 мин ;

4 — результаты испытаний по определению начального давления. — начальное разрушающее давление;

Pg — разрушающее давление через в мин , Рде — разрушающее давление через S0 лет

Рисунок А.1 — Вычисление коэффициента регрессии давления Rrp

А.4 Определение расчетного давления

А.4.1 Определение РвтЬп

Целью определения долговременного давления является установление характеристик регрессионного анализа. Долговременное разрушающее давление, полученное в ходе испытания, относится только к испытанным трубам. Если предполагаемое значение долговременного разрушающего давления не соответствует минимальным долговременным проектным требованиям для класса давления испытуемой трубы, характеристику регрессионного анализа можно использовать при проектировании. Однако в отношении оценки конкретного испытанного класса давления труб испытание показывает несоответствие изготовленной трубы требованиям по долговременным характеристикам.

Используя требуемое значение PN. определяют соответствующее значение *1iPN.e?.S%LCL °° таблице А.1 или по формуле (А.1) и вычисляют минимальное разрушающее давление через 50 лет Рздлъп по формуле

PS0.min * PN ’ 4<,PN.97.5*La.-    <А-4)

где PN — номинальное давление, бар.

Используя значение коэффициента регрессии давления R^p. рассчитанное по формуле (А.З). и значение минимального разрушающего давления через 50 лет Рзд.щт- рассчитанное по формуле (А.4). минимальное разрушающее давление через б мин. Pemin вычисляют по формуле

PN Ч|*мг.»Ъ1Сь Р»Я1Я

блчп

'иг

(А.5)

" 1 бар * 1 МПа = 0.1 Н/мм2 = 10е Н/м2.

13

ГОСТ Р 57949—2017

А.4.2 Определение расчетного минимального начального разрушающего давления Р0 rf На результаты испытаний по определению начального разрушающего давления влияет скорость увеличения давления: чем выше скорость увеличения давления, тем выше начальное разрушающее давление. Для учета скорости увеличения давления в порядок проектирования вводят поправочный коэффициент С.

Поправочный коэффициент С для начального разрушения вычисляют по формуле

(А.6)

где Pq — начальное разрушающее давление, вычисленное 8 ходе регрессионных испытаний, описанных в А.З. бар;

Pg — разрушающее давление через 6 мин., бар.

Нижнюю границу доверительного интервала при доверительной вероятности 97.5 % для начального разрушающего давления (минимальное начальное разрушающее давление) P0jnn вычисляют по формуле

= С • Pe.miv

Расчетное минимальное начальное разрушающее давление Р0 а вычисляют по формуле

t

Р S Р O.tf ОЛ1П

1 - У 0.01 1.90

(А.7)

(А.В)

где У — коэффициент вариации для среднего начального разрушающего давления Ро.среяиее- установленный по результатам работы системы контроля качества предприятия при регулярном тестировании труб определенного класса давления. %;

1.96 — множитель для доверительной вероятности 97.5 %.

Графическое представление данного расчета приведено на рисумсе А.2.

Ось X — логарифмическая шкала времени, ч; ось У — логарифмическая шкала давления, бар:

1 — пиния нижней границы доверительного интервала при доверительной вероятности 97.5 %:

Рца— расчетное минимальное начальное разрушающее давление:

” минимальное начальное разрушающее давление; а — 1.96 1 о. где а — стандартное отклонение результатов начальною разрушающего давления, полученное из системы контроля качества.    ■“ минимальное разрушающее давление через в мин :

^SOxrm минимальное разрушающее давление через 50 лет

Рисунок А.2 — Вычисление расчетного минимального начального разрушающего давления Р

14

ГОСТ Р 57949—2017

А.5 Порядок контроля Р0 d

Чтобы убедиться, что долговременный коэффициент запасе прочности при растяжении, относящийся к 97,5 % LCL через 50 лет т|( pn.97.svj.CL и долговременный коэффициент запаса прочности, относяцийся к среднему значению минимального разрушающего давления через 50 лет {Р50 среднее пел) пг.т.срщно« соблюдаются, выполняют следующие расчеты по определению расчетного минимального начального разрушающего давления (см. рисунок А.З):

• значение Рв СГСД|1СС вычисляют по формуле

бсрсдкво

• значение Р50.среднее вычисляют по формуле

р    - р

бОсведмве ' б.срадмве

'RP-

минимальное значение Р50.среда ее вычисляют по формуле

^ОдреАнеотт =    ’ *V,PN. среднее-

(А.9)

(А. Ю)

(А.11)

где t\, ры срощюс — долговременный коэффициент запаса прочности при растяжент. относящийся к среднему значению минимального разрушающего давления через 50 лет (Рзд.средиее.тю)- из таблицы А.1 или рассчитанный по формуле (А.2);

• если Р$0.фе» 1ев, рассчитанное по формуле (А. 10). больше или равно значению pso.

средюе.тп

г рассчитанному

по формуле (А.11). то значение Р$ б является достаточным для удовлетворения требований по минимальному значению долговременного коэффициента запаса прочности, относящегося к среднему значению. В противном случае необходимо увеличивать, пока данное требование не будет соблюдено. Соблюдение детого требования также обеспечивает удовлетворение требований по минимальному значению долговременного коэффициента запаса прочности при растяжении, относящегося к 97,5 % LCL через 50 лет. так как    ф[Д|||:а |Ы1 включает в себя значение 1,96 • о.

У

0цГ

6,сроит

Отл

Ось X — логарифмическая шкала ■рамени, ч; ось Y — логарифмическая шкала давления, бар: Т — линия нижней границы доверительного интервала при доверительной вероятности 97.5 4:2 — средняя линия. 3 — РМп,рк<МДнь*. * — PNntPN.97,5*lCL; P0d— расчетное минимальное начальное разрушающее давление.    — минимальное начальное

разрушающее давление: а — 1,96 о. где о — стандартное отклонение результатов начальною разрушающего давления, полученное из системы контроля качества. Р6тИ минимальное разрушающее давление через в мин..    — среднее разрушающее давление через

в мни.. Азоту» — минимальное разрушающее дааление через S0 лет. ^бОсряаиае/мт среднее минимальное разрушающее давление через S0 лет: Ри    — среднее разрушающее дааление через S0 лет

60 среднее

р

бЭсрвшне.птп

бОлят

X

10’2    10*’    10°    10’    10*    105    104 itf 10’ X

Рисунок А.З — Вычисление долговременных средних значений разрушающего давления

15

ГОСТ Р5794&—2017

А.6 Оценка характеристик напорных изделий

Используя результаты испытаний начального разрушающего давления, выполненных для определенного класса груб за определенный период времени, вычисляют среднее начальное разрушающее давление Р0 срС1Д|,С|. и стандартное отклонение <т начального разрушающего давления. Коэффициент вариации для среднего начального разрушающего давления У. %. вычисляют по формуле

У*----100.    (А.12)

О <р«ом*«

Для оценки изделия, спроектированного с использованием изложенного метода, система контроля качества должна быть способна подтвердить соответствие изделия требованиям по минимальному давлению, а также установить. является ли среднее начальное разрушающее давление ^.среднее большим или равным расчетному минимальному начальному разрушающему давлению

16

ГОСТ Р 57949—2017

Приложение В (справочное)

Полиномиальный анализ с использованием взаимосвязей второго порядка

В.1 Общие положения

Используя данный метод, строят кривую, задаваемую формулой

у-с* dx + exi,

где у — десятичный логарифм значения исследуемого свойства: с — точка пересечения с осью У;

6. в — коэффициенты двух порядков переменной г. х — десятичный логарифм времени, ч.

8.2 Переменные

Вычисляют следующие переменные:

•    £х, —сумму всех отдельно измеренных значений х,

•    £х* —сумму квадратов всех отдельно измеренных значений х;

•    ]Гх* —сумму кубов всех отдельно измеренных значений х;

•    £х* —сумму четвертых степеней всех отдельно измеренных значений х;

•    £У( —сумму всех отдельно измеренных значений у,

-    (£у,)2 —квадрат суммы всех отдельно измеренных значений у:

•    £у* —сумму квадратов всех отдельно измеренных значений у:

•    £(*, Vi) —сумму произведений соответствующих отдельно измеренных значений xf у',

-    X(xfy,}—сумму произведений соответствующих отдельно измеренных значений х?, у^

•    сумму квадратов остатков, параллельных оси X, Sx для линейного участка, вычисляют по формуле

s, = I

|де X — среднеарифметическое значение по всем xf вычисляют по формуле (В.З)

У X

X*—;

(В.1)

(В.2)

(В.З)

• сумму квадратов остатков, параллельных оси X. S,, для квадратичного участка вычисляют по формуле

5„-£ (*?-ХТ-

- сумму квадратов остатков, параллельных оси У. Sy вычисляют по формуле

sy = I(y,-v)2.

где У — среднеарифметическое значение по всем yf вычисляют по формуле (В.6)

у, Ху,.

(В.4)

(В.5)

(В.6)

• сумму квадратов остатков, перпендикулярных кривой. Sxy для линейного участка вычисляют по формуле

(В.7)

• сумму квадратов остатков, перпендикулярных кривой. S^y для квадратичного участка вычисляют по формуле

(В.8)

17

ГОСТ Р 57949—2017

В.З Система решения

Переменные с. d и е вычисляют из следующей матрицы

£yJ=c n+d £х,+е £х,г:

2>,У,) = сX*.+d Хх? + в'Х*.3: SW-yJ-e-I*?**'-!*? +* I

В.4 Пригодность данных

Квадратичный коэффициент корреляции г5 вычисляют по формуле

г, с 1м» XR г,>у £(«? у,)-[(£у.^"] Ху.’ [Ну,)1'”]

Лжейный коэффициент корреляции г вычисляют по формуле

Данные непригодны для анализа, если значение линейного коэффициента корреляции меньше, чем соответствующее минимально допустимое значение линейного коэффициента корреляции, приведенное в таблице 1. в зависимости от количества переменных л.

В.5 Проверка пригодности к экстраполяции

Если кривую предполагается экстраполировать, вычисляют значение М по формуле

(В.9)

<В.10>

s* S1 l!lss -s2 s -s' ]

°|    .    rl I r »r Mr trr t

M=-r+ , s3 s3

tf    Л9У

Если значение M меньше или равно нулю, данные непригодны для экстраполяции. В.6 Пример расчета

Исходные данные для примера расчета приведены в таблице 5.

-    =21.671:

-    £х2 =62.989;

-    X*,3 в 180.623:

-    £xJ =584.233;

•    ХУ/ * 56.728;

•    (ХУ.У =3218.09;

•    2V * 214.571:

•    ХК'У,)» 80.932:

•    Xl*fy.)s235-175-

Суммы квадратов остатков:

Sx- 31.8811:

S„ = 386.638;

Sy = 0.0347:

-1.0242;

Sxxy = -3,0448.

Система решения: с = 3.8288: d- -0.0262;

в = -0.0022.

Коэффициент корреляции: г2 = 0.9647: г =0.9822.

Проверка пригодности к экстраполяции: tv- 2.1604;

М= 15859.6.

(В.12)

18

ГОСТ Р 57949—2017

Расчетные средние значения Vm в разные моменты времени приведены в таблице В.1 и показаны на рисунке В.1.

Таблица В.1 — Расчетные средние значения Vm

Время Л, ч

Vm

0.1

7125

1

6742

10

6315

100

5856

1000

5375

10000

4884

100 000

4393

438 000

4091

Ось X — логарифмическая шкала времени, ч. ось У — логарифмическая шкапа значений исследуемого свойства: 1 —■ 438 000 ч (S0 лет); 2 — линия регрессии, построенная по данным таблицы 8 J; 3 — точка данных

Рисунок В.1 — Пиния регрессии, построенная по данным таблицы В. 1

19

ГОСТ Р 57949—2017

Приложение С (справочное)

Нелинейный метод анализа

С.1 Общие положения

В настоящем приложении приведен нелинейный метод анализа данных, полученных по результатам долговременных испытаний образцов труб и деталей трубопроводов из реактоппасгов. армированных стекловолокном, на жесткость, выведены следующие формулы для расчета:

• четырех параметров метода, то есть а. Ь, с и d;

- доверительного и прогнозируемого интервалов для кривой.

Примечание — Данные и порядок проведения метода относятся к долговременным испытаниям на жесткость, но метод также может быть применен к данным, соответствующим математической модели и требующим экстраполяции на 50 лет.

С.2 Модель

Нелинейный метод анализа можно выразить как модель, состоящую из двух взаимосвязанных линейных регрессионных моделей — линия 1 и линия 2. Порядок расчета для линии 1 применяют в расчетах для линии 2 для получения четырех параметров модели, которые используют для расчета долговременного значения исследуемого свойства.

С.2.1 Порядок расчета для линии 1

С.2.1.1 Определение параметров У, х^и yt У, вычисляют по формуле

VJ-IgS,.    (С.1)

где Sj — значение исследуемого свойства. х, вычисляют по формуле

где 7^— время, ч.

у, вычисляют по формуле

х,=1д(60Г,+1).

<С.2>

(С.З)

Среднеарифметическое значение X; х вычисляют по формуле

п

(С.4)

Среднеарифметическое значение у> у вычисляют по формуле

(С.5)

Формулы (С.1)—(С.5) относятся к отдельно измеренным значениям исследуемого свойства S, через разные периоды времени проведения испытаний х-г С.2.1.2 Определение параметре» а и Ь Начальное значение параметра bq вычисляют по формуле

а0 = 0,995^.    (С.6)

Начальное значение параметра вычисляют по формуле

(С.7)

С.2.1.3 Определение методом наименьших квадратов оценок А и В и несмещенной оценки of Оценку А вычисляют по формуле

А = у-Вх.

Оценку В вычисляют по формуле

(С.8)

(С.9)

20

ГОСТ Р 57949—2017

Несмещенную оценку д? вычисляют по формуле

„а - £(у.-Х.У _ R5S

' "    (п-2)    "(п-2)'

где RSS — сумма квадратов остатков, вычисляют по формуле (С. 11}

RSS=X^“^Iy.-^IVr

С.2.1.4 Определение оценки параметров с и d Оценку параметра с с вычисляют по формуле

с = -(Дди+1д60).

Оценку параметра d d вычисляют по формуле

С.2.2 Порядок расчета для линии 2

С.2.2.1 Определение параметров Хг у. X и У

X, вычисляют по формуле

X. •

11 вхр

■9(Г)

ч

Примечание — Значения с и d рассчитывают по формулам (С. 12) и (С. 13). У; вычисляют по формуле

Vg(s,)-

Среднеарифметическое значение X, X вычисляют по формуле

— X*

п

Среднеарифметическое значение Y-, У вычисляют по формуле

у ШИ. п

С.2.2.2 Определение методом наименьших квадратов оценок а и 6 и несмещенной оценки of Оценку Ь вычисляют по формуле

f _ К*, • *Ку. - у) _ ("S    £х,ху.)

S(x,-xf ("Т*? Х*,£*.Г

Оценку а вычисляют по формуле

а = У - ЬХ.

Несмещенную оценку д| вычисляют по формуле

-г ХСУ,-Y.f RSS 2“    <п-2)    ‘{п-2)*

тде RSS — сумма квадратов остатков, вычисляют по формуле

RSS=£y 2-зХУ,-Ь£Х,У,.

При этом должно соблюдаться неравенство

а + 6 > У, > а.

С.2.2.Э Определение доверительного и прогнозируемого интервалов Дисперсию для а вычисляют по формуле

Дисперсия (а) =

(С.10)

(С.11)

(С.12)

(С.13)

(С. 14)

(С.15)

(С.16)

(С.17)

(С.18) (С. 19) (С.20)

(С.21)

(С.22)

(С.23)

21

ГОСТ Р 57949—2017

Дисперсию для Ь вычисляют по формуле

Дисперсия (б)*.

{"6т)

*1)

Оценку среднеквадрэгической ошибки для а е(э) вычисляют по формуле

с(а) = ^Дисперсия (а).

Оценку среднеквадрагической ошибки для Ь £(6) вычисляют по формуле

*Ь) * ^Дисперсия (б).

(С.24)

(С.25>

(C.26J

Доверительный интервал при доверительной вероятности 100 %Ц*для линии 2 как функция от X вычисляют по формуле

(С-27)

гдвцх —вычисляют по формуле (С.31 >; и — вычисляют по формуле

■рвжц

. . Г <x-xf

(С.26)

Прогнозируемый интервал при доверигегъной вероятности 100 % Yx для линии 2 как функция от X вычисляют по формуле

(С.29)

У = Y *У

'X Х1,1М«11ц’

где Ух — вычисляют по формуле (С.31); Играми — вычисляют по формуле

Чрамии

V- 1... (*-*>'

(С.ЗО)

L л №.-^J

Ух =|ix ■ а + бХ.

(С.31)

С.2.2.4 Проверка параметров а и б по (-критерию Стьюдентэ Чтобы проверить, равны ли нулю а или 6. используют формулу

Рг(|<|

(С.32)

где /— (-критерий Стыодента с числом степеней свободы (п-2).

Из статистических таблиц для Р ■ 90 % («1,771.

Из статистических таблиц для Р = 95 % (= 2.160.

Если значения (для а и 6. рассчитанные по формулам (С.ЗЗ) и (С.34) соответственно, больше значений (. указанных для Р = 90 % или Р = 95 %, то а и б не равны 0

в

(для as-.

t(e)

(С.ЗЗ)

( для о = ——.

г(6>

(С.34)

С.2.2.5 Расчет долговременной (50 лет) жесткости

Формулы, приведенные в С.2.1 и С.2.2, являются стандартными формулами линейной регрессии. Значение долговременной жесткости, его доверительный и прогнозируемый интервалы рассчитывают по формулам (С.35)—(С.37).

Используя формулу (С.31). экстраполированную долговременную жесткость V^0rteT вычисляют по формуле

^soner “Psoner = ® + ЬХ.

(С.35)

22

ГОСТ Р 57949—2017

Используя формулу (С.27). доверительный интервал для экстраполированной долговременной жесткости Н 50 лет вычисляют по формуле

Рмявт “РвОлвт * ^границ'    (С.36)

Используя формулу (С.29). прогнозируемый интервал для экстраполированной долговременной жесткости *50 пе[ вычисляют по формуле

^50пег = У50)М>т ± ^границ'    (С.37)

Преобразуют логарифмические значения формул (С.Э5)—(С.37) обратно в значения жесткости по формулам (С.38)—(С.40).

Экстраполированную долговременную жесткость мг Н/м2. вычисляют по формуле

(С.38)

Доверительный интервал при доверительной вероятности 90 % для экстрапогмроеанной долговременной жесткости p(S)50ier Н/м2. вычисляют по формуле

(С.39)

Прогнозируемый интервал при доверительной вероятности 90 % для экстраполированной долговременной жесткости Y(S)50лвг Н/м2. вычисляют по формуле

y(S)50«,    ».    (С.40)

С.З Пример расчета

В таблице С.1 приведены исходные данные для примера расчета нелинейного метода анализа.

Таблица С.1 — Исходные данные для примера расчета негынейного метода анализа

4

Исходные ванные

Производные значения

Вреыя,

Жесткость S(, H/u2

■9<вОТ,*1).,,

Линейное значение у,

Линейное значение еремени.

X.

0

0

0.000000

1

0.10

7114

3.852114

0.845098

-2.199873

0.900981089

-1.000000

2

0.27

6935

3.841046

1.235528

-1.680067

0.864045469

-0.568636

3

0.50

6824

3,834039

1.491362

-1.428181

0.835713323

-0.301030

4

1.00

6698

3.825945

1.785330

-1.178593

0.798385481

0.000000

5

3.28

6533

3.815113

2.296226

-0.888531

0.720523173

0.515874

6

7.28

6453

3.809762

2.641276

-0.757777

0.659034121

0.862131

7

20.0

6307

3.799823

3.079543

-0.529608

0.572939842

1.301030

8

45.9

6199

3.792322

3.440122

-0.366192

0.498426628

1.661813

9

72.0

6133

3.787673

3.635584

-0.267424

0.457861654

1.857332

10

166

5692

3.755265

3.998303

0.411303

0.384436030

2.220108

11

219

5508

3,740994

4.118628

0.732338

0.361035235

2.340444

12

384

5393

3.731830

4.362501

0.958300

0.315663484

2.584331

13

504

5364

3.729489

4.480596

1.019680

0.294833214

2,702431

14

3000

5200

3.716003

5.255275

1.416309

0.179974497

3.477121

23

ГОСТ Р 57949—2017

Окончание таблицы С. 1

Исходные денные

Производные значения

Время.

Л.Ч

Жесткость Sj. Н/м1 2 3

1в(6,>. Y,

19(в07, • 1). х,

Линейное значение У(. у,

Линейное эиа» чеиие времени.

к

*g(7J

15

10 520

4975

3.696793

5.800168

2.245487

0.122406128

4.022016

16

438300

7.419923

0.034979805

5.641771

Примечания

1    Линейное значение У} у, вычисляют по формуле (С.З).

2    Линейное значение времени X, вычисляют по формуле (С.14).

3    Исходные данные в настоящей таблице аналогичны исходным данным в таблице 5.

4    Значения для ; = 0 и i = 16 — расчетные, а для / от 1 до 15 вхлюч. — измеренные или полученные из результатов измерений.

С.3.1 Порядок расчета для линии 1 С.3.1.1 Определение параметров У, X; и у, Значения У', х- и у. приведены в таблице С.1.

х

о

48.465540

1S

= 3,231036.

У-

л    15

С.3.1.2 Определение параметров а и Ь

(С.41)

(С.42)

э0 = 0.995(Vy^,in = 0,995 • 3.696793 = 3.678309.    (С.43)

bQ = AJOOSiY^^ -а0= 1.005 • 3,852114 - 3.678309 = 0.193066.    (С.44)

С.3.1.3 Определение методом наименьших квадратов оценок А и В и несмещенной оценки of Используя значения из таблицы С.2. рассчитывают В

в = £К »)(/. г) ,"£«.>■.    »'.083,9    jew,

£<*,-?)*    16 t«7.75- 2349.3*

А = у - Вх = -0,1675 - 0,8319 3.231036 = -28555.

Используя значения А и в и значения из таблицы С.2 рассчитывают of

1    (л-2)    (л-2)    13

где

RSS = £yf-^Iy.-e£x;y, = 2Z6524-Z8555 251-0.8319-17.8 = 0.6653.

С.3.1.4 Определение оценки параметров си (У Используя значения А и в. рассчитывают значения с и О

с = -(Аё 1 + 1д60) = 165353:

3 = -б-1 =-1202.

Результаты расчета для линии 1 приведены в таблице С.2.

(C.46J

(С.47)

(С.48)

(С.49)

(С.50)

24

ГОСТ Р 57949—2017

Таблица С.2 — Результаты расчета для линии 1

'

*/

*?

У?

«Л

У,. А * в*.

Ociatui.y,- у,

0

0,000000

-2.855548

0.000000

8.154155

0.000000

-2.855548

0.000000

1

0,845098

-2,199873

0.714191

4.839439

-1.859108

-2.152478

-0.047395

2

1,235528

-1,680067

1.526531

2.822626

-2.075771

-1.827663

0,147596

3

1,491362

-1,428181

2.224160

2.039700

-2.129934

-1.614826

0.166645

4

1,785330

-1,178593

3.187403

1.389081

-2.104177

-1.370262

0.191669

5

2,296226

-0,888531

5.272655

0.789487

-2.040267

-0.945227

0.056696

6

2,641276

-0,757777

6.976338

0.574226

-2.001498

-0.658167

-0.099610

7

3,079543

-0.529608

9.483585

0.280485

-1.630951

-0.293555

-0.236053

8

3,440122

-0,366192

11.834437

0.134097

-1.259746

0.006425

-0.372617

9

3,635584

-0,267424

13,217473

0.071516

-0.972242

0.169038

-0.436462

10

3,998303

0.411303

15,986426

0.169170

1.644515

0.470798

-0.059495

11

4.118628

0,732338

16.963100

0.536319

3.016228

0.570901

0.161437

12

4,362501

0,958300

19,031418

0.918339

4.180586

0.773789

0.184512

13

4,480596

1,019680

20,075742

1.039746

4.568772

0.872036

0.147643

14

5,255275

1,416309

27.617914

2.005933

7,443096

1.516522

-0.100213

15

5,800168

2,245487

33,641945

5,042213

13.024202

1.969840

0,275647

16

7,419923

3,317378

55.055253

11,004998

24.614690

3.317378

0,000000

Сумма

48.465540

-2,512828

187,753317

22,652377

17.803704

37.464846

0.000000

Примечания

1    х(-вычисляют по формуле (С.2).

2    у, — это линейное значение УР

3    Значения для i ■ 0 и / = 16 — расчетные, а для / от 1 до 15 аключ. — измеренные или полученные из результатов измерений. Значения для /» 0 и i« 16 не включены в суммарный расчет, приведенный под строкой для i = 16.

С.3.2 Порядок расчета для линии 2

С.3.2.1 Определение параметров Хр X и Y

Значения X-f и У( приведены 8 таблице С.З.

я    15

7 =    ,3.781881.

л    15

С.3.2.2 Определение методом наименьших квадратов оценок а и Ь и несмещенной оценки Оценку 6 вычисляют по формуле

6 £(*.-*)(у,    KEy.-I*!*-,)

£(х,-х)а    ("1*а 1*1*,)"

<15 30.302557-7.966259 56.726211)_ 2.626734 <15 5,146065 7.966259 7.966259)    13,729693 ~

Оценку а вычисляют по формуле

а = У - 6Х = 3.781881-0.191318-0,5310834 = 3,680275.

<С.52)

(С.53)

(С.54)

25

ГОСТ Р 57949—2017

Сумму квадратов остатков RSS вычисляют по формуле

RSS = £/2 -а£У,    =214.573977-3.680275 56.728211 -

-0.191318-30.302557 = 0.001136.

Несмещенную оценку of вычисляют по формуле

д, £<у,-*,f RSS 2    (л-2)    (п-2)

M£li2i = 0.000087. 13

Проверяют соблюдения неравенства

(С.55)

(С.56)

а + б>У( >а.

(С.57)

Расчет значений (У,),„,,< ® З.В52114. (У-)^ * 3.696793. а = 3.680275 и а + Ь = 1680275+0.191318 = 3.871593 показывает, что неравенство (С.57) соблюдается.

С.3.2.3 Определение доверительного и прогнозируемого интервалов Дисперсию для а вычисляют по формуле

(4i£xJ)    (д*Ух*)

Дисперсия (а) =,-*    ''    ■ = ■ '    ; . -

Дисперсию для б вычисляют по формуле

(nil)    (по?)

Дисперсия (б) = v    v

= 0.000033.

= 0.000097.

(C.58)

(C.59)

Используя значение а. вычисляют оценку среднеквадратической ошибки для а е(а) по формуле

Е(а) = ^Дисперсия (а) = ^0.000033 = 0.005756.

(С.60)

Используя значение б. вычисляют оценку среднеквадратической ошибки для б г(б) по формуле

г(б) = ^Дисперсия (б) = ^0.000097 = 0.009828.    (С.61)

Доверительный интервал при доверительной вероятности 90 % цх для линии 2 как функция от X вычисляют по формуле (С.27). а прогнозируемый интервал при доверительной вероятности 90 % Ух для линии 2 как функция от X вычисляют по формуле (С.29). Расчетные значения нижней и верхней границ доверительного интервала при доверительной вероятности 90 % (nL и ди соответственно) и нижней и верхней границ прогнозируемого интервала при доверительной вероятности 90 % (VL и Уц соответственно) приведены в таблице С.З. При этом экстраполированную долговременную жесткость Ух вычисляют по формуле (С.31). а (р » 1.771 для Р - 90 %.

С.3.2.4 Проверка параметров а и б по (-критерию Стьюдента Чтобы проверить, равны ли нулю а или б. используют формулу

Pr(|t|<*p) = P.    (С.62)

где (— (-критерий Стьюдента с числом степеней свободы (п-2).

Из статистических таблиц для Р = 90 % (= 1.77t.

Из статистических таблиц для Р » 95 % (* 2.160.

Если значения (для а и б. рассчитанные по формулам (С.63) и (С.64) соответственно. больше значений (. указанных для Р = 90 % или Р » 95 %. то а и б не равны 0

а 3.6803

(дляэ= —- = —:-=639.33753.    (С.63)

г(а) 0.005756

( для б = —^—= 0-1913 =19.4666323.    (С.64)

в(б) 0.009828

Согласно результатам проверки а и б не равны 0.

26

ГОСТ Р 57949—2017

С.3.2.5 Расчет долговременной (50 пет) жесткости _

Экстраполированную долговременную жесткость Ум ЛД1 вычисляют по формуле

У5050пвг = а + ЬХ = 3.6803 +0.1913 - 0.035 = 3.686968.    (С.65)

Доверительный интервал для экстраполированной долговременной жесткости Ц$олет вычисляют по формуле Й50 пвг50 пвг ±И1раинц = 3.686968 1 0.0096 = (3.677322 3.696614).    .66)

Прогнозируемый интервал для экстраполированной долговременной жесткости Узд вычисляют по формуле По = По «« ± Ироииц = 3.686968 ±0.0192 = (3.667725; 3,70621).    (С.67)

Преобразуя логарифмические значения формул (С.65)—(С.67) обратно в значения жесткости по формулам, получают:

•    экстраполированная долговременная жесткость S50ner Н/м2. равна

Sb0 п#г = ЮЙо = 103 68696« = 4864;    (С.68)

•    доверительный интервал при доверительной вероятности 90 % для экстраполированной долговременной

жесткости    Н/м2. равен

p(S)M л#т = 10“« *м'р«и«ч = ирмм**омм _ (4757; 4973);    (С.69)

•    лрогнозируемьм интервал при доверительной вероятности 90 % для экстраполированной долговременной жесткости У(5)50лет К/м2. равен

y(s)M«er    _ioa.6Mee8*°.oi92 -(4653; 5084).    (С.70)

Результаты расчета для пинии 2 приведены в таблице С.З. преобразованные логарифмические значения нелинейного метода анализа приведены в таблице С.4.

27

Таблица С.З—Результаты расчета для линии 2

t

Ъ

*,г

у?

{А * ВЖЛ

Остапы,

<v v

у

'fpHMI

yL

* "

Игр*м«4

*4

Му

<*ж * Играми*'

ошибка

границы

- ошибка границы

♦ ошибка гражцы

0

1.000000

3.871592

1.000000

14.989224

3871592

3.871592

0.000000

0019036

3652556

3.890628

0.009224

3662367

3880816

0.016651

3.854941

3.888243

1

0.900981

38521U

0811767

14.838781

3.470682

3.852648

0.000534

0018363

3.834285

3671011

0.007742

3644906

3.860389

0.016651

3.835997

3.869299

2

0.864045

3.841046

0.746575

14.753638

3318839

3.845582

0.004535

0018U8

3627434

3.863729

0.007216

3638366

3.852797

0.018651

3.828930

3.882233

3

0.835713

3.834039

0898417

14.699855

3.204157

3.840181

0.006122

0017998

3622165

3.858157

0.006826

3633335

3.846987

0.016651

3.823510

3.858813

4

0.798385

3.825945

0637419

14.637856

30S4S79

3.833020

0.007075

0017816

3615204

3.85083S

0.006335

362668S

3.8393S4

0.016951

3.816369

3.849671

5

0.720523

3815113

0519154

14.555085

2.748877

3.818123

0003011

0.017511

3600613

3.835634

0.005418

3812705

3.823542

0.016651

3.801472

3.834775

6

0.659034

3.809762

0.434326

14.514284

2510763

Э.806Э60

0003402

0017341

3.789019

Э.823701

0.004842

3801518

3.811201

0,018651

Э. 789708

3.823011

7

0.572940

3.799823

0.328260

14.438854

2.177070

3.789868

0.009934

0.017213

3.772878

3.807101

0.004361

3.785528

3.794249

0.016851

3.773237

3.806540

8

0.498427

3.792322

0248429

14.381703

1890194

3.775633

0.016689

0017207

3.758426

3.792840

0.004337

3.771296

3.779970

0.016651

3.758982

3.792284

9

0.457882

3.787673

0209637

14.346466

1.734230

3.767872

0.019801

0017245

3.750628

3.785117

0.004484

3.763388

3.772356

0.018651

3.751221

3.784523

10

0.384436

3.755265

0.147791

14.102014

1.443659

Э.75Э825

0.00U40

0017386

3.736439

3.771210

0.005000

3.748825

3.758824

0.018651

Э.7Э717Э

3.7704 76

11

0.381035

3.740994

0.130346

13.995036

13S0631

3.749348

0.008354

0017450

3.731897

3.768798

0.005220

3.744128

3.754587

0.018651

3.732698

3.785999

12

0.315883

3.731830

0Д99643

13.926558

1.178003

3.740867

0008837

0017601

3.723066

3.758269

0.00570S

3.734983

3.746372

0.016951

3.724018

3.757319

13

0.294833

3.729489

0.086927

13.909086

1Д99577

3.736682

0.007193

0017682

3.719000

3.754364

0.005949

3.730733

3.742631

0.016651

3.720031

3.753333

U

0.179974

3.716003

0X332391

13806681

0068786

3.714708

0001296

0018251

3696457

Э.732959

0.007472

3.707236

3.722180

0.018651

3.698057

Э.731359

15

0.122406

3.698793

0014983

13.666279

0,452510

3.703694

0.006901

0018810

3.685064

3.722304

0.008311

3695383

3.712005

0.016651

3.687043

3.720345

18

0.034980

3.686968

0.001224

13.593733

0.128969

3.686968

0.000000

0019243

3.697725

3.706211

0.009646

3677322

3.896614

0.016651

3.670317

3.703619

Сум

ме

7.986259

56.726211

5.146085

214573977

30.302557

5.204350

0.00000

-

Примечания:

1    Линейное значение времени X, вычисляют по формуле (С.14).

2    Y, вычисляют по формуле (С.1).

3    драили вычисляют по формуле {С .30).

4    Играми вычисляют по формуле (С.28).

5    Ошибку границы вычисляют по формуле

Ошибся границы - Ipdj.

е Значения для/ = 0и/= 16—расчетные, а для ют 1 до 15еключ—измеренные или пол ученнье из результатов измерений. 3на-ениядля/=0и /= 16 не включены в суммарный раочет, приведенный подстрокой для / = 16.

ГОСТ Р 57949—2017

Та б л и ца С.4 — Преобразованные логарифмические значения нелинейного метода анализа

i

h

•V

®/

<10*4

Shoo** >

Остатки

<V W

Sy

'«МП

уч

VfSJy

<10Ти)

(■>»(«

OOKrfaMtl)

<10*4>

n<S>y

$ ошибке границы <10 ow.6<* «*•**>)

®f*t”

S ошибка границы

<10 МУ -0Ч|ибм>

Sh* 4

SOuih6 кв /рвницы <Ю *<У,

• ошибка

0

0,0

0,000000

7440

7440

0

1.044606

7121

7774

1.021467

7284

7600

1.039085

7160

7731

1

0.1

0645098

7114

7123

-9

1,043189

6628

7430

1,017985

6997

7251

1.039065

6655

7401

2

0,3

1235528

6935

7008

-73

1.042672

6721

7307

1.016754

6892

7125

1,039085

6744

7282

3

0.5

1,491362

6824

6921

-97

1.042308

6640

7214

1.015842

6813

7031

1.039085

6661

7191

4

1.0

1.785330

6698

6808

-110

1.041875

6534

7093

1.014693

6709

6908

1.039085

6552

7074

5

3.3

2296226

6533

6578

-45

1.041143

6318

6649

1.012554

6497

6661

1.039085

6331

6636

6

7.3

2.641276

6453

6403

50

1.040737

6152

6663

1.011211

6332

6474

1.039065

6162

6653

7

20.0

3.079543

6307

6164

143

1.040430

5925

6414

1.010091

6103

6227

1.039085

5932

6405

8

45.9

3440122

6199

5965

234

1.040415

5734

6206

1.010036

5906

6025

1.039085

5741

6198

9

72.0

3.635584

6133

5860

273

1.040506

5632

6097

1.010379

5799

5920

1.039085

5639

6069

10

166.0

3.998303

5692

5673

19

1,040844

5451

5905

1,011579

5606

5739

1.039085

5460

5895

11

219.0

4.118628

5508

5615

-107

1.040999

5394

5845

1.012091

5548

5683

1.039085

5404

5834

12

384.0

4362501

5393

5504

-111

1.041361

5285

5732

1.013222

5432

5577

1.039085

5297

5719

13

504,0

4,480596

5364

5454

-90

1.041555

5236

5680

1.013793

5379

5529

1.039085

5246

5667

14

3000.0

5255275

5200

5185

15

1.042920

4971

5407

1.017353

5096

5274

1.039065

4969

5387

15

10520.0

5600168

4975

5055

-80

1.043783

4843

5276

1.019322

4959

5152

1.039085

4865

5252

16

438300.0

7.419923

4864

4664

0

1.045306

4653

5084

1.022456

4757

4973

1.039085

4681

5054

П ри меч ан и я:

1    х> вычисляют по формуле (С.2).

2    Значения для / = 0 и / = 16 — расчетные, а для /от 1 до 15 еключ. — измеренные или полученные из результатов измерений.

8

ГОСТ Р 57949—2017

ГОСТ Р 57948—2017

С.4 Описание и комментарии по данным и модели

В настоящем приложении использована процедура последовательной линеаризации. Эта процедура недостаточно оптимальна для целей настоящего стандарта. Например, при прогнозировании значения жесткости на 50 лет (экстраполированная долговременная жесткость 5Мжт) важны только параметр а и связанные с ним оценки погрешностей измерения для S и а. Четырехпараметрическая модель для процедуры линеаризации выражается формулой

где S — жесткость. Н/м2; Г — время, ч;

У, =*g(s,) = -

a t b

1 > вкр

*9<П*

г= 1.

, л.

(С.71)

I — индекс отдельного измерения.

Четырехпарвметрическая модель линейна по параметрам а и b и нелинейна по параметрам си г/. Поэтому разработанный статистический анализ, предназначенный для получения всех необходимых оценок и интервалов, требует объемных алгебраических расчетов.

С.4.1 Линия 1

Линия 1 — перезапись модели, выраженной формулой (C.7t), для отображения времени как функции от жесткости с добавлением компоненты случайной ошибки для полного описания стандартной линейной регрессионной модели. Модегъ линии 1 вычисляют преобразованием оси У с использованием предварительных оценок для а и б по формуле

У,    )=Д^Вх>11. ,-=1.....п.    (С.72)

где    ж-, — логарифмическое значение времени, вычисляют по формуле (С.73);

е, N (0. <т,2) — случайная ошибка.

х, = 1д(60Г +1) = Jg60+ Ig7(.    (С.73)

Примечания

1    Случайная ошибка е1, указывает на нормальное распределение результатов измерений и изменение образца при постоянных условиях испытания.

2    1 мин. в формуле (С.73) добавлена для обеспечения примерного совпадения нулей по осям времени и логарифма времени.

Соответственно Д и В вычисляют по формулам:

сиг/вычисляют по формулам:

„ е ♦ (0 ВО d

(С.74)

В = ,

d

(С.75)

-(A8-’+lg60).

(С.76)

d «-В-1.

(С.77)

Для оценки параметров сиг/ могут быть использованы начальные значения параметров е и Ь, получаемые из минимального.» максимального значений жесткости. Но при этом модель для линии 1 требует выполнения неравенства э + Ь > У, > а, которое может не выполняться для начальных значений. Принимая, что модель для линии 1 хорошо соответствует данным и ошибка измерений мала, формулу (С.72) заменяют на следующую формулу

Л “In

1а + Ъ У

абсолютное значение --

{ У а

(С.78)

Начагъные значения параметров и вычисляют по формулам (С.6) и (С.7) соответственно.

В качестве альтернативного варианта, можно получить значения параметров а, Ь. е и г/, используя подходящее статистическое программное обеспечение, способное рассчитать точные значения этих переменных путем итераций или с использованием правильно заданного критерия наименьших квадратов. Но такое программное обеспечение не способно рассчитать стандартные погрешности или доверительные интервалы.

30

ГОСТ Р 57949—2017

С.4.2 Линия 2

Линия 2 — перезапись модели, выраженной формулой (С.71), 8 виде простой линейной зависимости жесткости от преобразованного времени с использованием оценок линии 1 для параметров с и d. Модель линии 2 вычисляют по формуле

Y,sa*bXi2/.iш^.....п.    (С.79)

где    Xt — преобразованное значение времени, вычисляют по формуле (С.80):

e2j- N (0. of) — случайная ошибка.

(С.80)

Прим еча нив — Случайная ошибка e2j указывает на нормальное распределение результатов измерений и изменение образца при постоянных условиях испытания.

С учетом оценок для параметров с и d. полученных по расчету для линии 1 иш с испогь зовам ивм подходящего статистического программного обеспечения, модель линии 2 можно использовать для повторной оценки параметров а и б. Доввригвгъные и прогнозируемые интервалы для линии 2 получают с использованием стандартных статистических методов для тнейных моделей и путем обратного преобразования жесткости как функции времени.

С.4.3 Дополнительные данные

С.4.3.1 Расчет начальной жесткости

Используя результаты измерений жесткости за период до 10000 ч, вычисляют начальные значения параметров а,) и    по формулам (С.6) и (С.7) соответственно. Для этих данных начальное значение параметра аф является

также логарифмическим значением экстраполированной долговременной жесткости ^ которое можно рассчитать по формуле

во = *9(^50 net).    (С.81)

Используя формулу (С.В1). экстраполированную долговременную жесткость SS0ner Н/м2, можно рассчитать по формуле

Sso/w - W* ■ 10эвМ309 = 4768.

(С.82)

Начальное значение параметра ^ — это изменение между логарифмическими значениями начальной жесткости So и экстраполированной долговременной жесткости S§o wr которое можно рассчитать по формуле

t>0 = t9lS0'S5On'J-    «=*3)

Используя формулу (С.83). начальную жесткость SQ, Н/м2. вычисляют по формуле

10°'1МОвв-4768 = 7437,    (С.84)

или. используя формулу

ao + J>oslg(So>.    (С.85)

начальную жесткость S0. Н/м2, вычисляют по формуле

Sq * 10a°,e° ■ to3#71378 =7437.    (С.86)

С.4.3.2 Аппроксимация пинии 1 Аппроксимация пинии 1 приведена на рисунке С.1.

Примечание — Данные для построения рисунка С.1 приведены в таблице С.2.

31

ГОСТ Р5794&—2017

у*

Ось X — значения xf ось У — значения у; линия тренда — (у . А * fix). • “ точм данных Рисунок С. 1 —Аппроксимация линии 1

С.4.3.3 Аппроксимация линии 2

Аппроксимация пинии 2 и кривые зависимости жесткости от времени с наложением доверительных и прогнозируемых интервалов приведены на рисунках С.2—С.4.

Примечания

1    Данные для построения рисунка С2 приведены в таблице С.З.

2    Данные для построения рисунков С.З и С.4 приведены в таблице С.4.

32

ГОСТ Р 57949—2017

Ось X — значения Xj ось У — значения pL — нижняя граница доверительного интервала при доверительной вероятности 90 %:    — верхняя граница доверительною интервала

при доверительной вероятности 90 Ч; Ух — линия тренда для линии 2;

У|_ —— нижняя траница прогнозируемого интервала при доверительной вероятности 90 Ч:

Уу — верхняя граница прогнозируемою интервала при доверительной вероятности 90 Ч. в — точен данных

Рисунок С.2 —Аппроксимация линии 2. включая доверительные и прогнозируемые интервалы

33

ГОСТ Р5794&—2017

Ось X —> значения х( ось У — значения S,: pfSJi “ преобразованная нижняя граница доверительною ингервапа при доверительной вероятности 90 %;    — преобразованная верхняя граница доверительною интервала

при доверительной вероятности 90 %:    — линия тренда для пинии 2; Y(S)^ — преобразованная нижняя граница

прогнозируемого интервала при доверительной вероятности 90 %. Y(S),j — преобразованная верхняя граница прогнозируемого интервала при доверительной вероятности 90 Ч. я — точки данных

Рисунок С.З — Зависимость жесткости от логарифма времени, включая доверительные и прогнозируемые интервалы

34

ГОСТ Р 57949—2017

100

10000

1000000 X

Ось X — значения ос» У — значения S,: p{S)L — преобразованная нижняя граница доверительного интервала при доверительной вероятности 90 %: р(б)ц — преобразованная верхняя граница доверительного интервала при доверительной вероятности 90 %;    пиния тренда для линии 2: yfSJt — преобразованная нижняя граница

прогнозируемого интервала при доверительной вероятности 90 Ч; Y(S)y —■ преобразованная верхняя граница прогнозируемого интервала при доверительной вероятности 90 V о — точки данных

Рисунок С.4 — Зависимость жесткости от времени, включая доверительные и прогнозируемые интервалы

35

ГОСТ Р 57949—2017

Приложение D (справочное)

Расчет нижних границ доверительного и прогнозируемого интервалов для метода А

D.1 Расчет величин и дисперсий Величину В вычисляют по формуле

В * -0'Х(1+£).

Дисперсию А для а вычисляют по формуле

A = D

Дисперсию оп2 для прямой при xL вычисляют по формуле

о* =А + 2Вх1+Сх*.

(0.1)

(D.2)

(D.3)

где — логарифм времени Л. ч.

Дисперсию ошибки of вычисляют по формуле

o?-2ToJ.    (0.4)

Общую дисперсию для будущих значений yL при xL вычисляют по формуле

=<$+<*;.    (D.5)

Стандартное отклонение для yL вычисляют по формуле

а,ш K+0.)°'s-    (0.6)

D.2 Расчет нижних границ доверительного и прогнозируемого интервалов Прогнозируемое значение yL для у при xL вычисляют по формуле

yL*B + b-\.    (0.7)

где а — точка пересечения с осью Y. вычисляют по формуле (12); b — угол наклона прямой, вычисляют по формуле (11).

Нижнюю границу прогнозируемого интервала при доверительной вероятности 95 % yL(> ^ для yL вычисляют по формуле

W^L-VV    <D-8>

где Гу— значение /-критерия Стыодента из таблицы 2.

Преобразованное логарифмическое значение нижней границы прогнозируемого интервала LPL при доверительной вероятности 95 % для xL вычисляют по формуле

LPI-ojs =1Qyio.»».    (D.9)

Если в формуле (0.5) задать значение of = <т„. это позволит рассчитать нижнюю границу доверительного интервала LCL при доверительной вероятности 95 %.

D.3 Пример расчета

Для примера расчета нижних границ доверительного и прогнозируемого интервалов использованы данные, приведенные в 3.2.6 и таблице 4.

Величины и дисперсии: в ■ -1.469 • 10“s;

А =4.6673 -КГ6.

36

ГОСТ Р 57949—2017

Для 50 пет (436 000 ч): а* =4,0466-10-*: of «паи-кг4.

В таблице 0.1 приведены расчетные значения LCL и LPL (см. таблицу 4).

Таблица 0.1—Расчетные значения Vm, LCL и LPL

Вр«ыя А. ч

LCL

LPL

0.1

45.76

43.86

42.83

1

42.39

41.05

39.93

10

3928

38.41

37.16

100

36.39

35.91

34.53

1000

33.71

33.41

32.03

10000

3123

30.79

29.63

100 000

28.94

2826

27.36

438 000

27.55

26.74

25.98

37

ГОСТ Р 5794В—2017

Приложение ДА (справочное)

Оригинальный текст модифицированных структурных элементов примененного международного стандарта

ДА.1

3.2.6 Оценка статистических процедур примером расчета

Данные, приведенные в таблице 3. использованы в следующем примере для помощи в проверке статистических процедур, а также компьютерных программ и электронных таблиц, принятых пользователями. Они должны давать результаты, аналогичные тем. которые получают при расчете по формулам, приведенным в настоящем международном стандарте. В данном примере исследуемое свойство обозначено V, значения которого имеют типичные модули и не имеют особых элементов. Из-за погрешностей округления точное совпадение результатов маловероятно, поэтому для того, чтобы процедура расчета была приемлемой, результаты, полученные для г. г2. Ь. а и средних значений V и Vm должны совпадать е пределах 11 % от значений, приведенных е примере. Значения других статистических величин приведены для упрощения проверки процедуры.

Примечание — Данный раздел международного стандарта изменен а соответствии с требованиями ГОСТ 1.5—2001 (п. 4.1.2).

ДА.2

3.3.5 Оценка статистических процедур примером расчета

Данные, приведенные в таблице 5. использованы е следующем примере для помощи в проверке статистических процедур, а также компьютерных программ и электронных таблиц, принятых пользователями. Они должны давать результаты, аналогичные гем. которые получаются при расчете по формулам, приведенным в настоящем международном стандарте. Используют данные таблицы 5 для расчета в соответствии с процедурами, описанными в п. 3.3.2—3.3.4, чтобы убедиться, что статистические процедуры, используемые совместно с данным методом, дают результаты для г. г2. 6. а и Vm, совпадающие в пределах ±1 % со значениями, приведенными в примере.

Примечание — Данный раздел международного стандарта изменен в соответствии с требованиями ГОСТ 1.5—2001 (п. 4.1.2).

ДА.З

B. 6 Оценка статистических процедур на примере расчета

Используют данные таблицы 5 е процедурах расчета, описанных а разделах В.1—В.5. чтобы убедиться, что статистические процедуры, используемые с данным методом, дают результаты для г. г2. Ь. а и Vm, совпадающие в пределах ±0.1 %со значениями, приведенными в примере (п = 15).

Примечание — Данный раздел международного стандарта изменен в соответствии с требованиями ГОСТ 1.5—2001 (П. 4.1.2).

ДА.4

C. З Оценка статистических процедур на примере расчета

Используют данные таблицы С.1 в процедурах расчета, описанных в разделах С.2.1—С.2.5. чтобы убедиться. что статистические процедуры, используемые сданным методом, дают результаты, совпадающие в пределах ±0.1 % со значениями, приведенными в примере (л = 15).

Примечание — Данный раздел международного стандарта изменен в соответствии с требованиями ГОСТ 1.5—2001 (п. 4.1.2).

38

ГОСТ Р 57949—2017

|1) tsoTsog.^ois1 2 * 4 * б*

(2) ISO 8521:20092>

(3] ISO 10471:2003s*

{4] IS010952:2014**

(5] ISO 10468:2003s*

(6] ISO 14828:2003е*

{7] IS0 10639:20047*

Библиография

Системы пластмассовых трубопроводов. Трубы из термореактивных стеклопластиков (GRP). Определение времени до разрушения под воздействием постоянного внутреннего давления {Plastics piping systems. Glass-reinforced thermosetting plastics (GRP) pipes. Determination of time to failure under sustained internal pressure] Системы пластмассовых трубопроводов. Трубы из термореактивкых стеклопластиков. Методы испытания для определения кажущегося начального когъцево-го предела прочности при растяжении (Plastics piping systems. Glassreinforced thermosetting plastics (GRP) pipes. Test methods for the determination of the apparent initial circumferential tensile strength]

Трубы из термореахгивных стеклопластиков (GRP). Определение долговременной предельной деформации изгиба и долговременной предельной относительной кольцевой деформации во влажных условиях (Glass-reinforced thermosetting plastics (GRP) pipes. Determination of the longterm ultimate bending strain and the longterm ultimate relative ring deflection under wet conditions]

Системы пластмассовых трубопроводов. Трубы и фитинги из термо реактивных стеклопластиков (GRP). Определение стойкости к химическому воздействию с внутренней стороны деформированного участка (Plastics piping systems. Glass-reinforced thermosetting plastics (GRP) pipes and fittings. Determination of the resistance to chemical attack for the inside of a section in a deflected condition]

Трубы из термореактивных стеклопластиков (GRP). Определение долговременной удельной кольцевой жесткости при ползучести во влажных условиях и расчет коэффициента ползучести во влажных условиях (Glass-reinforced thermosetting plastics (GRP) pipes. Determination of the longterm specific ring creep stiffness under wet conditions and calculation of the wet creep factor]

Термоотверждающився пластмассы, армированные стеклом. Определение долгосрочной удельной кольцевой жесткости при релаксации при влажных условиях и расчет коэффициента релаксации при влажных условиях (Glass-reinforced thermosetting plastics (GRP) pipes. Determination of the longterm specific ring relaxation stiffness under wet conditions and calculation of the wet relaxation factor]

Пластиковые трубопроводные системы для напорного и безнапорного водоснабжения. Армированные стекловолокном термореактивные пластики (GRP) на основе ненасыщенных полиэфирных смол (UP) (Plastics piping systems for pressure and non-pressure water supply. Glass-reinforced thermosetting plastics (GRP) systems based on unsaturated polyester (UP) resin]

1* На территории Российской Федерации рекомендуется применять ГОСТ Р 55076—2012 «Трубы и детагы трубопроводов из реакгоплэстов. армированных стекловолокном. Методы определения наработки до отказа под действием постоянного внутреннего давления».

2* На территории Российской Федерации рекомендуется применять ГОСТ Р 54925—2012 «Трубы и детали трубопроводов из реакгоплэстов. армированных стекловолокном. Методы определения начального окружного предела прочности при растяжении».

3* На территории Российской Федерации рекомендуется применять ГОСТ Р 57030—2016 (ИСО 10471:2003) «Трубы и детали трубопроводов из реактопластов. армированных стекловолокном. Метод определения долговременной предельной деформации изгиба и долговременной предельной относительной кольцевой деформации при воздействии влаги».

4* На территории Российской Федерации рекомендуется применять ГОСТ Р 55077—2012 «Трубы и детали

трубопроводов из реактопластов. армированных стекловолокном. Методы определения химической стойкости внутренней поверхности в условиях нагружения».

б* На территории Российской Федерации рекомендуется применять ГОСТ Р 57006—2016 (ИСО 10468:2003) «Трубы и детали трубопроводов из реактопластов. армированных стекловолокном. Метод определения долговременной удельной кольцевой жесткости при ползучести и коэффициента ползучести при воздействии влага».

е* На территории Российской Федерации рекомендуется применять ГОСТ Р 57008—2016 (ИСО 14828:2003) «Трубы и детали трубопроводов из реактопластов. армированных стекловолокном. Метод определения долговременной удельной кольцевой жесткости при релаксации и коэффициента релаксации при воздействии влаги».

7* На территории Российской Федерации рекомендуется применять ГОСТ Р 54560—2015 «Трубы и детали трубопроводов из реактопластов. армированных стекловолокном, для водоснабжения, водоотведения, дренажа и канализации. Технические условия».

39

ГОСТ Р 57949—2017

[8]    EN 1766:2000    Продукты и системы для защиты и ремонта бетонных конструкций. Методы испы

таний. Эталонные бетоны для испытания (Products and systems for the protection and repair of concrete structures. Test methods. Reference concretes for testing)

[9]    EN 14364:2013    Системы трубопроводные пластиковые дпя напорной и безнапорной канали

зации и дренажа. Армированные стекловолокном термореактивные пластики (GRP) на основе ненасыщенных полиэфирных смол. Спецификации дпя труб, фитингов и соединений {Plastics piping systems for drainage and sewerage with or without pressure. Glass-reinforced thermosetting plastics (GRP) based on unsaturated polyester resin (UP). Specifications for pipes, fittings and joints]

[10]    ИСОЯР 10465-3:20071> Подземная укладка гибких труб из стеклопластика на основе ненасыщенной поли

эфирной смолы (GRP-UP). Часть 3. Параметры укпадки и ограничения при применении [Underground installation of flexible glassreinforced pipes based on unsaturated polyester resin (GRP-UP). Part 3: Instalation parameters and application limits]

На территории Российской Федерации рекомендуется применять ГОСТ 32661—2014 «Трубы и детали трубопроводов из реактопластов. армированных волокном. Общие технические условия» (приложение Е).

40

ГОСТ Р 57949—2017

УДК 691.462:006.354    ОКС 23.040.20;

23.040.45

Ключевые слова; трубы, детали трубопроводов, реактопласты. стекловолокно, регрессионный анализ

41

БЗ 12—2017/64

Редактор А. А. /Сабанов Технический редактор И.Е. Черепкова Корректор Е.И. Рычкова Компьютерная верстка Ю. В. Поповой

Сдано в набор 20.11.2017. Подписано в почать 21.12.2017. Формат 60 * 84 Vg. Гарнитура Ариап. Уел. печ.л. 5.12. Уч.-иэд. л.4,в0. Тираж 24 эха Эак. 2567

Подготовлено на основе электронной версии, предоставленной разработчиком стандарта

ИД «Юриспруденция». 115419, Moctaa. ул. Орджоникидзе, И. wwwjoreirdat.ru

Издано и отпечатано во ФГУП «СТАНДАРТИМФОРМ». 123001. Мосхаа. Гранатный пер.. 4.