allgosts.ru77.120 Цветные металлы77 МЕТАЛЛУРГИЯ

ГОСТ 33728-2016 Платина. Методы атомно-эмиссионного анализа с дуговым возбуждением спектра

Обозначение:
ГОСТ 33728-2016
Наименование:
Платина. Методы атомно-эмиссионного анализа с дуговым возбуждением спектра
Статус:
Действует
Дата введения:
01.01.2017
Дата отмены:
-
Заменен на:
-
Код ОКС:
77.120.99

Текст ГОСТ 33728-2016 Платина. Методы атомно-эмиссионного анализа с дуговым возбуждением спектра


ГОСТ 33728-2016



МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

ПЛАТИНА

Методы атомно-эмиссионного анализа с дуговым возбуждением спектра

Platinum. Methods of ark atomic-emission analysis

МКС 77.120.99

Дата введения 2017-01-01

Предисловие

Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0-92 "Межгосударственная система стандартизации. Основные положения" и ГОСТ 1.2-2009 "Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, применения, обновления и отмены"

Сведения о стандарте

1 РАЗРАБОТАН Открытым акционерным обществом "Красноярский завод цветных металлов имени В.Н.Гулидова" (ОАО "Красцветмет"), ОАО "Екатеринбургский завод по обработке цветных металлов", Федеральным казенным учреждением "Государственное учреждение по формированию Государственного фонда драгоценных металлов и драгоценных камней Российской Федерации, хранению, отпуску и использованию драгоценных металлов и драгоценных камней (Гохран России) при Министерстве финансов Российской Федерации"

2 ВНЕСЕН Техническим комитетом по стандартизации МТК 102 "Платиновые металлы"

3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 29 февраля 2016 г. N 85-П)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004-97

Код страны по
МК (ИСО 3166) 004-97

Сокращенное наименование национального органа по стандартизации

Армения

AM

Минэкономики Республики Армения

Беларусь

BY

Госстандарт Республики Беларусь

Киргизия

KG

Кыргызстандарт

Россия

RU

Росстандарт

Таджикистан

TJ

Таджикстандарт

Туркмения

ТМ

Главгосслужба "Туркменстандартлары"

Узбекистан

UZ

Узстандарт

(Поправка. ИУС N 2-2023).

4 Приказом Федерального агентства по техническому регулированию и метрологии от 9 июня 2016 г. N 585-ст межгосударственный стандарт ГОСТ 33728-2016 введен в действие в качестве национального стандарта Российской Федерации с 1 января 2017 г.

5 Подготовлен на основе применения ГОСТ Р 52520-2006*

________________

* Приказом Федерального агентства по техническому регулированию и метрологии от 9 июня 2016 г. N 585-ст ГОСТ Р 52520-2006 отменен с 1 января 2017 г.

6 ВВЕДЕН ВПЕРВЫЕ

Информация о введении в действие (прекращении действия) настоящего стандарта публикуется в указателе "Национальные стандарты". Информация об изменениях к настоящему стандарту публикуется в указателе "Национальные стандарты", а текст изменений - в информационных указателях "Национальные стандарты". В случае пересмотра или отмены настоящего стандарта соответствующая информация будет опубликована в информационном указателе "Национальные стандарты". Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет ()

ВНЕСЕНА поправка, опубликованная в ИУС N 2, 2023 год

Поправка внесена изготовителем базы данных

1 Область применения

Настоящий стандарт распространяется на платину в слитках и порошке с массовой долей платины не менее 99,8%, предназначенную для производства сплавов, полуфабрикатов, химических соединений платины и других целей.

Настоящий стандарт устанавливает спектрографический и спектрометрический методы атомно-эмиссионного анализа (с дуговым возбуждением спектра) для определения массовых долей примесей алюминия, висмута, германия, железа, золота, иридия, кадмия, кальция, кобальта, кремния, магния, марганца, меди, молибдена, мышьяка, никеля, олова, осмия, палладия, рения, родия, рутения, свинца, серебра, сурьмы, теллура, титана, хрома и цинка в платине.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие межгосударственные стандарты:

ГОСТ 8.010-2013 Государственная система обеспечения единства измерений. Методики выполнения измерений. Основные положения

________________

В Российской Федерации наряду с указанным действует ГОСТ Р 8.563-2009 "Государственная система обеспечения единства измерений. Методики (методы) измерений".

ГОСТ 6709-72 Вода дистиллированная. Технические условия

ГОСТ 14261-77 Кислота соляная особой чистоты. Технические условия

ГОСТ 18300-87 Спирт этиловый ректификованный технический. Технические условия

________________

В Российской Федерации действует ГОСТ Р 55878-2013 "Спирт этиловый технический гидролизный ректификованный. Технические условия".

ГОСТ 25336-82 Посуда и оборудование лабораторные стеклянные. Типы, основные параметры и размеры

ГОСТ 31290-2005 Платина аффинированная. Технические условия

ГОСТ ИСО 5725-1-2003 Точность (правильность и прецизионность) методов и результатов измерений. Часть 1. Основные положения и определения

________________

В Российской Федерации действует ГОСТ Р ИСО 5725-1-2002 "Точность (правильность и прецизионность) методов и результатов измерений. Часть 1. Основные положения и определения".

ГОСТ ИСО 5725-2-2003 Точность (правильность и прецизионность) методов и результатов измерений. Часть 2. Основной метод определения повторяемости и воспроизводимости стандартного метода измерений

________________

В Российской Федерации действует ГОСТ Р ИСО 5725-2-2002 "Точность (правильность и прецизионность) методов и результатов измерений. Часть 2. Основной метод определения повторяемости и воспроизводимости стандартного метода измерений".

ГОСТ ИСО 5725-3-2003 Точность (правильность и прецизионность) методов и результатов измерений. Часть 3. Промежуточные показатели прецизионности стандартного метода измерений

________________

В Российской Федерации действует ГОСТ Р ИСО 5725-3-2002 "Точность (правильность и прецизионность) методов и результатов измерений. Часть 3. Промежуточные показатели прецизионности стандартного метода измерений".

ГОСТ ИСО 5725-4-2003 Точность (правильность и прецизионность) методов и результатов измерений. Часть 4. Основные методы определения правильности стандартного метода измерений

________________

В Российской Федерации действует ГОСТ Р ИСО 5725-4-2002 "Точность (правильность и прецизионность) методов и результатов измерений. Часть 4. Основные методы определения правильности стандартного метода измерений".

ГОСТ ИСО 5725-6-2003 Точность (правильность и прецизионность) методов и результатов измерений. Часть 6. Использование значений точности на практике

________________

В Российской Федерации действует ГОСТ Р ИСО 5725-6-2002 "Точность (правильность и прецизионность) методов и результатов измерений. Часть 6. Использование значений точности на практике".

ГОСТ OIML R 76-1-2011 Государственная система обеспечения единства измерений. Весы неавтоматического действия. Часть 1. Метрологические и технические требования. Испытания

Примечание - При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю "Национальные стандарты", который опубликован по состоянию на 1 января текущего года, и по соответствующим выпускам ежемесячного информационного указателя "Национальные стандарты" за текущий год. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем стандарте применены термины и определения по ГОСТ ИСО 5725-1 и ГОСТ 8.010.

4 Требования

4.1 Общие требования и требования безопасности

Общие требования, требования к обеспечению безопасности выполняемых работ и обеспечению экологической безопасности - по нормативным документам на общие требования к методам анализа драгоценных металлов и их сплавов.

4.2 Требования к квалификации исполнителей

К проведению анализа допускаются лица не моложе 18 лет, обученные в установленном порядке и допущенные к самостоятельной работе на используемом оборудовании.

5 Сущность методов

Методы анализа основаны на испарении и возбуждении атомов пробы в дуговом разряде, измерении интенсивности эмиссии атомов определяемых элементов-примесей и последующем определении массовой доли этих элементов с помощью градуировочных зависимостей, полученных по стандартным образцам состава платины.

6 Спектрографический метод атомно-эмиссионного анализа с дуговым возбуждением

При спектрографическом методе используют фотографическую регистрацию эмиссионных спектров.

Настоящий метод позволяет определить массовую долю элементов-примесей в диапазонах, приведенных в таблице 1.

Таблица 1 - Диапазоны определения массовых долей элементов-примесей

В процентах

Определяемый элемент

Диапазон определения массовых долей

Алюминий

От 0,0001 до 0,010 включ.

Висмут

От 0,001 до 0,010 включ.

Железо

От 0,0005 до 0,03 включ.

Золото

От 0,0001 до 0,015 включ.

Иридий

От 0,003 до 0,02 включ.

Кадмий

От 0,001 до 0,010 включ.

Кальций

От 0,001 до 0,010 включ.

Кремний

От 0,0001 до 0,006 включ.

Магний

От 0,0001 до 0,005 включ.

Марганец

От 0,0005 до 0,010 включ.

Медь

От 0,0001 до 0,005 включ.

Молибден

От 0,001 до 0,01 включ.

Мышьяк

От 0,001 до 0,010 включ.

Никель

От 0,0001 до 0,003 включ.

Олово

От 0,0005 до 0,010 включ.

Палладий

От 0,0001 до 0,02 включ.

Родий

От 0,0001 до 0,03 включ.

Рутений

От 0,001 до 0,01 включ.

Свинец

От 0,0001 до 0,010 включ.

Серебро

От 0,0001 до 0,02 включ.

Сурьма

От 0,0005 до 0,010 включ.

Теллур

От 0,001 до 0,010 включ.

Хром

От 0,001 до 0,010 включ.

Цинк

От 0,001 до 0,010 включ.

6.1 Точность (правильность и прецизионность)

6.1.1 Показатели точности метода

Показатели точности метода по ГОСТ ИСО 5725-2 и ГОСТ ИСО 5725-3: границы интервала, в котором с вероятностью P=0,95 находится абсолютная погрешность результатов анализа (приписанная погрешность) , стандартные отклонения повторяемости S и промежуточной прецизионности S, значения критического диапазона CR(4), предела промежуточной прецизионности R и предела воспроизводимости R в зависимости от массовой доли определяемого элемента-примеси приведены в таблице 2.

Таблица 2 - Показатели точности метода при P=0,95

В процентах

Определяемый элемент

Диапазон массовых долей опреде-
ляемых элемен-
тов

Границы интер-
вала абсо-
лютной погреш-
ности

Стан-
дартное откло-
нение повторя-
емости
S

Крити-
ческий диапазон
CR(4)

Стан-
дартное откло-
нение промежу-
точной прецизи-
онности
S

Предел промежу-
точной прецизи-
онности
R

Предел воспро-
изводи-
мости
R

Алюминий, золото, кремний, магний, медь, никель, палладий, родий, свинец, серебро

От 0,0001 до 0,0002 включ.

0,00008

0,00008

0,00028

0,00004

0,00011

0,00014

Алюминий, золото, кремний, магний, медь, никель, палладий, родий, свинец, серебро

Св. 0,0002 до 0,0003 включ.

0,0002

0,00015

0,0005

0,00011

0,0003

0,0004

Алюминий, золото, кремний, магний, медь, никель, палладий, родий, свинец, серебро

Св. 0,0003 до 0,0005 включ.

0,0002

0,00022

0,0008

0,00011

0,0003

0,0004

Алюминий, железо, золото, кремний, магний, марганец, медь, никель, олово, палладий, родий, свинец, серебро, сурьма

Св. 0,0005 до 0,001 включ.

0,0005

0,00028

0,0010

0,00025

0,0007

0,0009

Алюминий, железо, золото, кремний, магний, медь, никель, олово, палладий, родий, свинец серебро

Св. 0,001 до 0,003 включ.

0,0007

0,0006

0,0021

0,00032

0,0009

0,0012

Висмут, кадмий, кальций, марганец, молибден, мышьяк, рутений, сурьма, теллур, хром, цинк

Св. 0,001 до 0,002 включ.

0,0010

0,0007

0,0027

0,0006

0,0017

0,0022

Висмут, иридий, кадмий, кальций, марганец, молибден, мышьяк, рутений, сурьма, теллур, хром, цинк

Св. 0,002 до 0,003 включ.

0,0020

0,0011

0,0038

0,0012

0,0034

0,0044

Алюминий, железо, олово, родий, свинец, золото, кремний, магний, медь, палладий, серебро

Св. 0,003 до 0,010 включ.

0,0030

0,0017

0,0056

0,0018

0,0050

0,0065

Висмут, иридий, кадмий кальций, марганец, молибден, мышьяк, рутений, сурьма, теллур, хром, цинк

Св. 0,003 до 0,006 включ.

0,0020

0,0016

0,0059

0,0011

0,0030

0,0039

Висмут, иридий, кадмий кальций, марганец, молибден, мышьяк, рутений, сурьма, теллур, хром, цинк

Св. 0,006 до 0,010 включ.

0,0056

0,0016

0,0059

0,0027

0,0076

0,0010

Железо, золото, иридий, палладий, родий, серебро

Св. 0,01 до 0,03 включ.

0,0060

0,0020

0,0072

0,0022

0,0080

0,0010

6.1.2 Правильность

Для оценки систематической погрешности данного метода определения элементов-примесей в платине используют в качестве опорных аттестованные значения массовых долей элементов в государственных стандартных образцах состава платины ГСО 7351-97 (комплект Пл-35) или других ГСО, не уступающих по набору определяемых элементов и метрологическим характеристикам.

Систематическая погрешность метода при уровне значимости =5% по ГОСТ ИСО 5725-4 для всех определяемых элементов-примесей в платине незначима.

6.1.3 Прецизионность

6.1.3.1 Диапазон (X-X) результатов четырех определений, полученных для одной и той же пробы одним оператором с использованием одного и того же оборудования в пределах кратчайшего из возможных интервалов времени, может превышать указанный в таблице 2 критический диапазон CR(4) для n=4 в среднем не чаще одного раза на 20 случаев.

6.1.3.2 В пределах одной лаборатории два результата анализа одной и той же пробы, полученные в соответствии с 6.2-6.5 разными операторами с использованием одного и того же оборудования в разные дни, могут различаться с превышением указанного в таблице 2 предела промежуточной прецизионности R в среднем не чаще одного раза на 20 случаев.

6.1.3.3 Результаты анализа одной и той же пробы, полученные двумя лабораториями в соответствии с 6.2-6.5, могут различаться с превышением указанного в таблице 2 предела воспроизводимости R в среднем не чаще одного раза на 20 случаев.

6.2 Средства измерений, вспомогательные устройства, материалы и реактивы

При выполнении измерений применяют следующие средства измерений, вспомогательные устройства, материалы и реактивы:

Спектрограф дифракционный с трехлинзовой системой конденсоров, предназначенный для получения и фотографирования спектров в диапазоне от 200 до 1000 нм с обратной линейной дисперсией 0,6-0,7 нм/мм.

Весы лабораторные по ГОСТ OIML R 76-1 с пределом допускаемой абсолютной погрешности не более ±0,005 г.

Генератор дуги постоянного или переменного тока силой до 15 А.

Микроденситометр, предназначенный для измерения оптической плотности (почернения) спектральных линий.

Плита электрическая с закрытой спиралью.

Станок для заточки графитовых электродов с набором фрез.

Вода дистиллированная по ГОСТ 6709.

Кислота соляная ос.ч. по ГОСТ 14261, разбавленная в соотношении 1:1.

Образцы для градуировки (образцы платины с ранее установленными в данной лаборатории значениями массовых долей элементов-примесей).

Проявитель контрастный и фиксаж для фотопластинок.

Спирт этиловый ректификованный по ГОСТ 18300.

Стаканы химические термостойкие по ГОСТ 25336.

Стандартные образцы состава платины (комплект Пл-35) ГСО 7351-97 или другие стандартные образцы, не уступающие по составу элементов-примесей и точности.

Фотопластинки спектральные, обеспечивающие нормальное почернение.

Электроды графитовые по [1]* диаметром 6 мм с кратером глубиной 1-3 мм и диаметром 4 мм.

________________

* См. раздел Библиография, здесь и далее по тексту. - .

Электроды графитовые по [1] диаметром 6 мм, заточенные на полусферу или усеченный конус.

Допускается применение других средств измерений, вспомогательных устройств, материалов и реактивов при условии получения показателей точности, не уступающих указанным в таблице 2.

6.3 Отбор и подготовка проб

6.3.1 Отбор проб для анализа проводят по ГОСТ 31290.

6.3.2 Пробы платины могут поступать на анализ в виде ленты, проволоки, стружки, губки, порошка.

6.3.3 Пробы, поступающие на анализ в виде ленты, проволоки или стружки, для удаления поверхностных загрязнений кипятят в растворе соляной кислоты в соотношении 1:1 в течение 3-5 мин. Полученный раствор сливают, пробы промывают дистиллированной водой декантацией четыре-пять раз и высушивают на воздухе.

Пробы порошка и губки раствором кислоты не обрабатывают.

6.3.4 От проб платины, поступающих на анализ, отбирают по четыре навески, от образцов для градуировки или стандартных образцов - по две навески массой не менее 0,1 г каждая.

6.4 Подготовка оборудования к проведению измерений

6.4.1 Оборудование подготавливают к работе согласно эксплуатационным документам. Рабочие режимы приборов, длины волн аналитических линий и линий сравнения и фона, рекомендуемые для выполнения анализа, приведены в таблицах 3 и 4 соответственно. Для каждого определяемого элемента выбирают одну из рекомендуемых длин волн. Допускается использование других аналитических линий и рабочих режимов при условии получения показателей точности, не уступающих указанным в таблице 2.

Таблица 3 - Рекомендуемые рабочие режимы

Параметр

Значение параметра

Дуга постоянного тока:

сила тока, А

10-12

Дуга переменного тока:

частота разрядов, Гц

100

фиксированное значение фазы поджига, град.

60

сила тока, А

10-12

Условия фотографирования спектров:

ширина щели, мм

0,015

экспозиция, с

60

6.4.2 Электрододержатели и приспособления очищают спиртом от поверхностных загрязнений.

6.4.3 Включают водяное охлаждение электрододержателей.

6.4.4 Подготовленную к анализу навеску платины помещают в кратер графитового электрода. Контрэлектродом служит графитовый стержень, заточенный на полусферу или усеченный конус. При использовании в качестве источника возбуждения дуги постоянного тока анализируемая проба является анодом.

6.4.5 Межэлектродный промежуток устанавливают по увеличенному изображению дуги на экране промежуточной диафрагмы 5 мм и поддерживают строго постоянным, корректируя его в течение всей экспозиции.

Таблица 4 - Длины волн аналитических линий

В нанометрах

Определяемый элемент

Длина волны аналитической линии

Длина волны линии сравнения

Алюминий

308,215

326,842

309,270

326,842

396,152

326,842

Висмут

298,903

285,311

306,770

326,842

Железо

259,940

285,311

296,690

326,842

302,064

(Фон)

302,107

326,842

Золото

267,595

285,311

312,282

326,842

Иридий

269,423

(Фон)

322,078

326,842

Кадмий

232,928

(Фон)

Кальций

317,933

(Фон)

Кремний

251,611

285,311

288,158

285,311

Магний

277,983

285,311

279,553

285,311

280,270

285,311

Марганец

259,372

285,311

279,482

(Фон)

Медь

324,753

326,842

327,396

326,842

Молибден

313,259

(Фон)

Мышьяк

234,984

(Фон)

Никель

303,794

326,842

305,082

326,842

339,299

(Фон)

Олово

283,999

285,311

286,333

285,311

Палладий

325,878

326,842

340,458

326,842

Родий

339,685

326,842

343,489

326,842

346,204

326,842

Рутений

287,498

285,311

343,647

326,842

Свинец

280,200

(Фон)

283,305

(Фон)

Серебро

338,289

(Фон)

Сурьма

259,807

(Фон)

287,792

285,311

Теллур

238,576

(Фон)

Хром

284,325

(Фон)

Цинк

213,856

(Фон)

334,502

(Фон)

6.5 Проведение измерений

6.5.1 Для получения градуировочного графика используют стандартные образцы состава платины или образцы для градуировки. Спектры каждого стандартного образца (образца для градуировки) и анализируемой пробы фотографируют в одинаковых условиях. Для каждого стандартного образца (образца для градуировки) получают две, а для анализируемой пробы - четыре спектрограммы.

6.5.2 При массовой доле магния, меди, серебра в пробе более 0,002% фотографирование спектра проводят с использованием трехступенчатого ослабителя.

6.5.3 Фотопластинки проявляют, ополаскивают в воде, фиксируют, промывают в проточной воде и сушат.

6.5.4 С помощью микроденситометра на каждой спектрограмме измеряют почернение аналитической линии определяемого элемента S (таблица 4) и близлежащего фона S (минимальное почернение рядом с аналитической линией с любой стороны, но с одной и той же во всех спектрах на одной фотопластинке) или линии сравнения S. Вычисляют разность почернений . По значениям , и , полученным по двум спектрограммам для каждого стандартного образца, находят среднее арифметическое значение . От средних значений для стандартных образцов и , полученных по четырем спектрограммам для каждой анализируемой пробы, переходят к значениям логарифмов относительной интенсивности по таблице А.1 приложения А. Используя значения и , полученные для стандартных образцов, на масштабно-координатной бумаге строят градуировочный график в координатах (, ), где C - массовая доля, %, определяемого элемента в стандартном образце (образце для градуировки). По четырем значениям , полученным по четырем спектрограммам для каждого определяемого элемента, находят по графику значения X-логарифма значения массовой доли. По формуле C=10 вычисляют значения массовых долей каждого элемента-примеси в анализируемой пробе - результаты параллельных определений.

Допускается использование других линий, а также выполнение процедуры построения градуировочных графиков с применением соответствующих программ вычислительной техники при условии получения показателей точности, не уступающих указанным в таблице 2.

6.5.5 В области верхней границы диапазона массовых долей допускается построение градуировочных графиков в координатах , где - разность почернений аналитической линии и линии сравнения (платина).

6.5.6 По градуировочному графику, используя четыре параллельных значения либо , соответственно полученные по четырем спектрограммам для каждой пробы, находят четыре результата параллельных определений массовой доли каждого элемента-примеси в анализируемой пробе.

6.6 Оценка приемлемости результатов параллельных определений и получение окончательного результата анализа

6.6.1 Приемлемость результатов параллельных определений оценивают в соответствии с ГОСТ ИСО 5725-6 путем сопоставления диапазона этих результатов (X-X) с критическим диапазоном CR(4), приведенным в таблице 2.

6.6.2 Если диапазон результатов четырех параллельных определений (X-X) не превышает критический диапазон CR(4), все результаты признают приемлемыми и за окончательный результат анализа принимают среднее арифметическое значение результатов четырех параллельных определений.

6.6.3 Если диапазон результатов четырех параллельных определений превышает критический диапазон CR(4), проводят еще четыре параллельных определения.

Рассчитывают критический диапазон для восьми параллельных определений CR(8) по формуле:

, (1)

где S - значение стандартного отклонения повторяемости, приведенное в таблице 2.

Если для полученных восьми параллельных определений значение (X-X) не превышает критический диапазон CR(8), то в качестве окончательного результата анализа принимают среднее арифметическое значение результатов восьми параллельных определений. В противном случае в качестве окончательного результата анализа принимают медиану результатов восьми параллельных определений. При этом наименьшие разряды числовых значений результатов определений и числовые значения показателей точности должны быть одинаковыми.

6.7 Контроль точности результатов анализа

6.7.1 Контроль промежуточной прецизионности и воспроизводимости

При контроле промежуточной прецизионности (с изменяющимися факторами оператора и времени) абсолютное расхождение двух результатов анализа (из четырех единичных определений каждый) одной и той же пробы, полученных разными операторами с использованием одного и того же оборудования в разные дни, не должно превышать предел промежуточной прецизионности R, указанный в таблице 2.

Если условие не выполняется, выполнение анализов прекращают, выясняют причины, приводящие к неудовлетворительным результатам, и устраняют их.

При контроле воспроизводимости абсолютное расхождение двух результатов анализа одной и той же пробы, полученных двумя лабораториями, в соответствии с требованиями настоящего стандарта не должно превышать предел воспроизводимости R, указанный в таблице 2.

6.7.2 Контроль правильности

Контроль правильности проводят путем анализа стандартных образцов платины. Образцы, используемые для контроля правильности, не следует использовать для получения градуировочных зависимостей.

При контроле правильности разность между результатом анализа и принятым опорным (аттестованным) значением содержания элемента-примеси в стандартном образце не должна превышать критическое значение К.

Критическое значение К рассчитывают по формуле:

, (2)

где - абсолютная погрешность опорного (аттестованного) значения содержания элемента-примеси в стандартном образце, %;

- границы интервала абсолютной погрешности результата анализа X (значения приведены в таблице 2), %.

7 Спектрометрический метод атомно-эмиссионного анализа с дуговым возбуждением

При спектрометрическом методе используют фотоэлектрический способ регистрации эмиссионных спектров.

Метод позволяет определить массовую долю элементов-примесей в диапазонах, приведенных в таблице 5.

Таблица 5 - Диапазоны измерений массовых долей определяемых элементов

В процентах

Определяемый элемент

Диапазон измерения массовой доли

Алюминий

От 0,0003 до 0,04 включ.

Висмут

От 0,0001 до 0,02 включ.

Германий

От 0,0001 до 0,007 включ.

Железо

От 0,0007 до 0,1 включ.

Золото

От 0,0003 до 0,08 включ.

Иридий

От 0,002 до 0,2 включ.

Кадмий

От 0,0003 до 0,005 включ.

Кальций

От 0,001 до 0,04 включ.

Кобальт

От 0,0003 до 0,01 включ.

Кремний

От 0,0007 до 0,04 включ.

Магний

От 0,0003 до 0,04 включ.

Марганец

От 0,0001 до 0,02 включ.

Медь

От 0,0003 до 0,02 включ.

Молибден

От 0,0001 до 0,005 включ.

Мышьяк

От 0,0001 до 0,015 включ.

Никель

От 0,0001 до 0,04 включ.

Олово

От 0,0001 до 0,01 включ.

Осмий

От 0,002 до 0,08 включ.

Палладий

От 0,0003 до 0,1 включ.

Рений

От 0,0007 до 0,1 включ.

Родий

От 0,0007 до 0,2 включ.

Рутений

От 0,001 до 0,08 включ.

Свинец

От 0,0003 до 0,04 включ.

Серебро

От 0,0006 до 0,02 включ.

Сурьма

От 0,0003 до 0,05 включ.

Теллур

От 0,0003 до 0,01 включ.

Титан

От 0,0007 до 0,005 включ.

Хром

От 0,0001 до 0,01 включ.

Цинк

От 0,001 до 0,04 включ.

7.1 Точность (правильность и прецизионность)

7.1.1 Показатели точности метода

Показатели точности метода по ГОСТ ИСО 5725-2 и ГОСТ ИСО 5725-3: границы интервала, в котором с вероятностью P=0,95 находится абсолютная погрешность результатов анализа (приписанная погрешность) , стандартные отклонения повторяемости S и промежуточной прецизионности S, значения критического диапазона CR(4), предела промежуточной прецизионности R и предела воспроизводимости R в зависимости от массовой доли определяемого элемента-примеси приведены в таблицах 6-8.

Таблица 6 - Показатели точности метода при P=0,95. Определение алюминия, висмута, германия, железа, золота, кальция, кобальта, кремния, магния, марганца, меди, молибдена, мышьяка, никеля, олова, палладия, рения, родия, рутения, свинца, серебра, сурьмы, теллура, титана, хрома, цинка

В процентах

Уровень массовых долей опреде-
ляемых элементов

Границы интервала абсолютной погреш-
ности

Стан-
дартное отклонение повторя-
емости
S

Крити-
ческий диапазон
CR(4)

Стан-
дартное отклонение промежу-
точной прецизи-
онности
S

Предел промежу-
точной прецизи-
онности
R

Предел воспроизво-
димости
R

0,00010

0,00008

0,000016

0,00006

0,000025

0,00007

0,00008

0,00030

0,00016

0,000044

0,00016

0,000065

0,00018

0,00022

0,00070

0,00028

0,00014

0,00050

0,00012

0,00033

0,00039

0,0010

0,0004

0,0002

0,0007

0,00018

0,0005

0,0006

0,0030

0,0014

0,0007

0,0025

0,0006

0,0017

0,0020

0,0050

0,0022

0,0011

0,0039

0,0009

0,0026

0,0031

0,0070

0,0028

0,0014

0,0050

0,0012

0,0033

0,0039

0,0100

0,0040

0,0020

0,0072

0,0017

0,0047

0,0056

0,020

0,008

0,004

0,014

0,0032

0,009

0,011

0,030

0,009

0,0032

0,012

0,0040

0,011

0,013

0,050

0,012

0,0052

0,019

0,0050

0,014

0,017

0,080

0,017

0,0078

0,028

0,007

0,020

0,024

0,10

0,02

0,0093

0,03

0,011

0,03

0,03

0,20

0,05

0,02

0,07

0,022

0,06

0,067

Таблица 7 - Показатели точности метода при P=0,95. Определение иридия и осмия

В процентах

Уровень массовых долей опреде-
ляемых элементов

Границы интервала абсолютной погреш-
ности

Стан-
дартное отклонение повторя-
емости
S

Крити-
ческий диапазон
CR(4)

Стан-
дартное отклонение промежу-
точной прецизи-
онности
S

Предел промежу-
точной прецизи-
онности
R

Предел воспроизво-
димости
R

0,0020

0,0012

0,0004

0,0014

0,0005

0,0014

0,0017

0,0030

0,0014

0,0007

0,0025

0,0006

0,0017

0,0020

0,0050

0,0022

0,0011

0,0039

0,0009

0,0026

0,0031

0,0070

0,0028

0,0014

0,0050

0,0012

0,0033

0,0039

0,0100

0,0040

0,0020

0,0072

0,0017

0,0047

0,0056

0,020

0,008

0,004

0,014

0,0032

0,009

0,011

0,030

0,012

0,006

0,022

0,0050

0,014

0,017

0,050

0,018

0,009

0,032

0,0076

0,021

0,025

0,080

0,024

0,012

0,043

0,011

0,030

0,034

0,10

0,03

0,014

0,05

0,011

0,030

0,04

0,20

0,07

0,036

0,13

0,029

0,08

0,10

Таблица 8 - Показатели точности метода при P=0,95. Определение кадмия

В процентах

Уровень массовых долей опреде-
ляемых элементов

Границы интервала абсолютной погреш-
ности

Стан-
дартное отклонение повторя-
емости
S

Крити-
ческий диапазон
CR(4)

Стан-
дартное отклонение промежу-
точной прецизи-
онности
S

Предел промежу-
точной прецизи-
онности
R

Предел воспроизво-
димости
R

0,00030

0,00016

0,00004

0,00016

0,000065

0,00018

0,00022

0,00070

0,00043

0,00014

0,00050

0,00012

0,00034

0,00040

0,0010

0,00082

0,00020

0,00072

0,00018

0,0005

0,00056

0,0030

0,0014

0,00036

0,0013

0,0006

0,0017

0,0020

0,0050

0,0022

0,0006

0,0022

0,0009

0,0026

0,0031

Для промежуточных значений массовых долей показатели точности находят методом линейной интерполяции по следующей формуле:

, (3)

где A - значение показателя точности для результата анализа, %;

A, A - значения показателей точности, соответствующие нижнему и верхнему уровню массовых долей определяемых элементов, между которыми находится результат анализа, %;

X - результат анализа, %;

C, C -значения нижнего и верхнего уровней массовых долей элементов, между которыми находится результат анализа, %.

7.1.2 Правильность

Для оценки систематической погрешности данного метода определения элементов-примесей в платине используют в качестве опорных значений аттестованные значения массовых долей элементов в государственных стандартных образцах состава платины ГСО 7003-93 (комплект СОПл-21) и ГСО 7351-97 (комплект Пл-35) или других ГСО, не уступающих по набору определяемых элементов и метрологическим характеристикам.

Систематическая погрешность метода при уровне значимости =5% незначима по ГОСТ ИСО 5725-4 для всех определяемых элементов-примесей в платине на всех уровнях определяемых содержаний.

7.1.3 Прецизионность

7.1.3.1 Диапазон (X-X) результатов четырех определений, полученных для одной и той же пробы одним оператором с использованием одного и того же оборудования в пределах кратчайшего из возможных интервалов времени, может превышать указанный в таблицах 6-8 критический диапазон CR(4) для n=4 по ГОСТ ИСО 5725-6 в среднем не чаще одного раза на 20 случаев.

7.1.3.2 В пределах одной лаборатории два результата анализа одной и той же пробы, полученные в соответствии с 7.2-7.5 разными операторами с использованием одного и того же оборудования в разные дни, могут различаться с превышением указанного в таблицах 6-8 предела промежуточной прецизионности R по ГОСТ ИСО 5725-3 в среднем не чаще одного раза на 20 случаев.

7.1.3.3 Результаты анализа одной и той же пробы, полученные двумя лабораториями в соответствии с 7.2-7.5, могут различаться с превышением указанного в таблицах 6-8 предела воспроизводимости R по ГОСТ ИСО 5725-1 в среднем не чаще одного раза на 20 случаев.

7.2 Средства измерений, вспомогательные устройства, материалы и реактивы

При выполнении измерений применяют следующие средства измерений, вспомогательные устройства, материалы и реактивы:

Спектрометр с генератором дуги постоянного (переменного) тока или аналитический комплекс на базе спектрографа средней дисперсии с анализатором эмиссионных спектров типа МАЭС и генератором дуги постоянного (переменного) тока.

Весы лабораторные по ГОСТ OIML R 76-1 с пределом допускаемой абсолютной погрешности не более ±0,001 г.

Плита электрическая с закрытой спиралью.

Стальная пресс-форма.

Станок для заточки графитовых электродов с набором фрез.

Вода дистиллированная по ГОСТ 6709.

Кислота соляная ос.ч. по ГОСТ 14261, разбавленная в соотношении в 1:1.

Образцы для градуировки (образцы платины с ранее установленными в данной лаборатории значениями массовых долей элементов-примесей).

Спирт этиловый ректификованный по ГОСТ 18300.

Стаканы химические термостойкие по ГОСТ 25336.

Стандартные образцы состава платины (комплект Пл-35) ГСО 7351-97 или другие СО, не уступающие по составу элементов-примесей и точности.

Электроды графитовые по [1] диаметром 6 мм с кратером глубиной 1-3 мм и диаметром 4 мм.

Электроды графитовые по [1] диаметром 6 мм, заточенные на полусферу или усеченный конус.

Допускается применение других средств измерений, вспомогательных устройств, материалов и реактивов при условии получения показателей точности, не уступающих указанным в таблицах 6-8.

7.3 Отбор и подготовка проб

7.3.1 Отбор проб проводят по ГОСТ 31290.

7.3.2 Пробы платины могут поступать на анализ в виде ленты, проволоки, стружки, губки, порошка.

7.3.3 Пробы, поступающие на анализ в виде ленты, проволоки или стружки, для удаления поверхностных загрязнений кипятят в растворе соляной кислоты в соотношении 1:1 в течение 3-5 мин. Полученный раствор сливают, пробы промывают дистиллированной водой декантацией четыре-пять раз и высушивают на воздухе. Пробы порошка и губки раствором кислоты не обрабатывают.

7.3.4 От лабораторных проб платины отбирают по четыре навески, от образцов для градуировки или стандартных образцов - по две навески массой не менее 0,1 г каждая. Навески в виде порошка запрессовывают в кратер графитового электрода.

7.4 Подготовка оборудования к проведению измерений

7.4.1 Оборудование подготавливают к работе согласно эксплуатационным документам. Длины волн аналитических линий и рабочие режимы спектрометра приведены в таблицах 9 и 10 соответственно. Для определения кадмия (при массовой доле менее 0,001%) и рения в дуге постоянного тока проводят дополнительную съемку при условиях, указанных в таблице 10. Допускается использование других аналитических линий и рабочих режимов при условии получения показателей точности, не уступающих указанным в таблицах 6-8.

7.4.2 Электрододержатели очищают спиртом от поверхностных загрязнений.

7.4.3 Включают водяное охлаждение электрододержателей.

7.4.4 Подготовленную к анализу навеску образца для градуировки или анализируемой пробы помещают в кратер графитового электрода. Контрэлектродом служит графитовый стержень, заточенный на полусферу или усеченный конус. При использовании в качестве источника возбуждения дуги постоянного тока анализируемая проба является анодом.

7.4.5 Межэлектродный промежуток устанавливают по увеличенному изображению дуги на экране промежуточной диафрагмы 5 мм и поддерживают строго постоянным, корректируя его в течение всей экспозиции.

Таблица 9 - Длины волн аналитических линий

Определяемый элемент

Диапазон измерения массовых долей, %

Длина волны аналитической линии, нм

Алюминий*

0,0003-0,04

309,271

Висмут

0,0001-0,02

223,061

Германий

0,0001-0,007

259,254; 269,134; 270,963

Железо*

0,0007-0,1

296,690; 304,761

Золото*

0,0003-0,08

312,282

Иридий*

0,002-0,2

292,479; 322,078

Кадмий

0,0003-0,005

340,365

Кальций

0,003-0,04

317,933

0,001-0,003

396,847

Кобальт

0,003-0,01

340,512; 344,917; 346,280

Кремний*

0,0007-0,04

250,689; 251,921; 288,158

Магний

0,0003-0,04

279,553; 277,983

0,0003-0,003

280,269

Марганец

0,0001-0,02

259,373; 279,482

Медь*

0,0003-0,02

222,778

0,0003-0,003

327,396

Молибден

0,0001-0,005

313,259; 315,817; 317,035

Мышьяк

0,0001-0,015

234,984

Никель*

0,0001-0,04

303,794; 310,547

Олово*

0,0001-0,01

283,999

Осмий

0,005-0,08

263,713

0,002-0,08

283,863; 305,866

Палладий*

0,001-0,1

292,249; 325,878

0,0003-0,005

342,124

Рений

0,003-0,1

221,426; 339,93

0,0007-0,01

346,047

0,0007-0,02

345,181; 346,472

Родий*

0,005-0,2

326,314

0,0007-0,2

332,309

0,0007-0,01

339,685

Рутений*

0,001-0,08

343,674

Свинец

0,0003-0,04

280,200

Серебро

0,0006-0,02

338,289

Сурьма*

0,0003-0,05

217,581; 231,147

Теллур

0,0003-0,01

238,576

Титан

0,0007-0,005

323,904; 324,199; 334,941

Хром

0,0001-0,01

283,563; 284,324

Цинк

0,001-0,04

334,502; 334,557

* Определение проводят методом внутреннего стандарта.

Таблица 10 - Рекомендуемые рабочие режимы

Параметр

Значение параметра

Основная съемка

Дополнительная съемка (Cd, Re)

Дуга постоянного тока:

сила тока, А

10-12

5-6

Дуга переменного тока:

частота разрядов, Гц

100

-

фиксированное значение фазы поджига, град.

60

-

сила тока, А

10-12

-

Условия регистрации спектров:

ширина щели, мм

0,015

0,015

время экспонирования, с

60

30

7.5 Проведение измерений

7.5.1 Для получения градуировочной зависимости проводят измерение интенсивности аналитических линий определяемых элементов, фона и линии сравнения (внутреннего стандарта) для стандартных образцов (образцов для градуировки). Для каждого из определяемых элементов выбирают одну из рекомендуемых аналитических линий (см. таблицу 9). Измерения проводят по методу внутреннего стандарта для следующих элементов: алюминий, железо, золото, иридий, кремний, медь, никель, олово, палладий, родий, рутений, сурьма. В качестве внутреннего стандарта выбирают линию платины 228,048 нм. Для остальных элементов аналитическим сигналом является абсолютное значение интенсивности линии за вычетом фона.

Измерения проводят для двух навесок стандартных образцов состава платины или образцов для градуировки и получают среднее значение.

7.5.2 Получают градуировочные зависимости относительной и абсолютной интенсивностей аналитических линий определяемых элементов от массовой доли этих элементов в стандартном образце (образце для градуировки) в координатах, предусмотренных программой спектрометра.

Далее проводят построение градуировочной зависимости для каждого элемента-примеси по алгоритму, заложенному в программном обеспечении спектрометра. Градуировочные характеристики сохраняют в файле данных градуировки и затем используют для последующих анализов проб.

7.5.3 Измеряют интенсивности аналитических линий определяемых элементов для каждой из четырех навесок пробы.

7.5.4 С помощью градуировочных зависимостей получают четыре результата параллельных определений массовой доли каждого определяемого элемента в пробе.

7.6 Оценка приемлемости результатов параллельных определений и получение окончательного результата анализа

7.6.1 Приемлемость результатов параллельных определений оценивают в соответствии с ГОСТ ИСО 5725-6 путем сопоставления диапазона этих результатов (X-X) с критическим диапазоном CR(4), приведенным в таблицах 6-8.

7.6.2 Если диапазон результатов четырех параллельных определений (X-X) не превышает критический диапазон CR(4), все результаты признают приемлемыми и за окончательный результат анализа принимают среднее арифметическое значение результатов четырех параллельных определений.

7.6.3 Если диапазон результатов четырех параллельных определений превышает критический диапазон CR(4), проводят еще четыре параллельных определения.

Рассчитывают критический диапазон для восьми параллельных определений CR(8) по формуле:

, (4)

где S - значение стандартного отклонения повторяемости, приведенное в таблицах 6-8.

Если для полученных восьми параллельных определений значение (X-X) не превышает критический диапазон CR(8), то в качестве окончательного результата анализа принимают среднее арифметическое значение результатов восьми параллельных определений. В противном случае в качестве окончательного результата анализа принимают медиану результатов восьми параллельных определений, если в нормативных документах не предусмотрено иное.

7.7 Контроль точности результатов анализа

7.7.1 Контроль промежуточной прецизионности и воспроизводимости

При контроле промежуточной прецизионности (с изменяющимися факторами оператора и времени) абсолютное расхождение двух результатов анализа (из четырех единичных определений каждый) одной и той же пробы, полученных разными операторами с использованием одного и того же оборудования в разные дни, не должно превышать предел промежуточной прецизионности R, указанный в таблицах 6-8.

Если условие не выполняется, выполнение анализов прекращают, выясняют причины, приводящие к неудовлетворительным результатам, и устраняют их.

При контроле воспроизводимости абсолютное расхождение двух результатов анализа одной и той же пробы, полученных двумя лабораториями, в соответствии с требованиями настоящего стандарта не должно превышать предел воспроизводимости R, указанный в таблицах 6-8.

7.7.2 Контроль правильности

Контроль правильности проводят путем анализа стандартных образцов платины. Образцы, используемые для контроля правильности, не следует использовать для получения градуировочных зависимостей.

При контроле правильности разность между результатами анализа и принятым опорным (аттестованным) значением содержания элемента-примеси в стандартном образце не должна превышать критическое значение К.

Критическое значение К рассчитывают по формуле:

, (5)

где - абсолютная погрешность опорного (аттестованного) значения содержания элемента-примеси в стандартном образце; %;

- границы интервала абсолютной погрешности результата анализа X (значения приведены в таблицах 6-8), %.

Приложение А
(обязательное)


Таблица значений , соответствующих измеренным значениям

Приводимая ниже таблица А.1 служит для перевода измеренных значений и . Таблица содержит результаты расчета по формуле:

, (А.1)

где - разность плотности почернений на фотопластинке;

- фактор контрастности.

Обозначим суммарную интенсивность линии вместе с фоном I, интенсивность фона под максимумом линии в отсутствие линии I. Так как , то отношение интенсивности линии I к интенсивности фона определяется по формуле:

. (А.2)

Если условия фотографирования спектра выбраны так, что почернения линии с фоном S и фона, отсутствие линии S лежат в нормальной области, то:

, где . (А.3)

Отсюда, пользуясь выражением , получаем .

Таблица А.1 охватывает наиболее важные для практики аналитической работы значения от 0,05 до 0,99, и части, охватывающей значения от 1,00 до 1,9.

В первой части таблицы в первой графе представлены значение с двумя знаками после запятой, цифры в головках других граф от 0 до 9 означают третий знак после запятой значения .

Например, =0,537: в первой графе находят значение 0,53 и в графе с цифрой 7 определяют соответствующее значение логарифма =0,388.

Вторая часть таблицы построена аналогичным образом с той разницей, что в первой графе приводятся значения с одним знаком после запятой, а цифры в головках других граф обозначают второй после запятой знак значения .

Например, =1,36: в первой графе находят значение 1,3, в графе с цифрой 6 находят значение логарифма =1,341.

Для значений , меньших чем 0,301, значение отрицательное - знак минус над характеристикой (±1 ....).

Так как , то таблица может быть применена также и для нахождения значения соответствующего значениям при любом способе измерения.

Если фактор контрастности не измеряют, то вместо значений в таблице применяют значения , при этом используют настоящую таблицу аналогичным образом. Если измеренное значение =0,674, то в первой графе находят значение 0,67 и в графе с цифрой 4 определяют значение логарифма 0,571.

Следует отметить, что найденное таким образом значение 0,571 представляет собой не , а . На точности анализа по методу "трех эталонов" это обстоятельство практически не отражается.

Таблица А.1 - Значения , соответствующие измеренным значениям

Продолжение таблицы А.1

Продолжение таблицы А.1

Окончание таблицы А.1

Библиография

[1] ТУ 3497-001-51046676-2001*Графитовые электроды для эмиссионного спектрального анализа

________________

* Документ в информационных продуктах не содержится. За информацией о документе Вы можете обратиться в Службу поддержки пользователей. - .

УДК 669.231:543.06.006.354

МКС 77.120.99

Ключевые слова: платина, платина в слитках, платина в порошке, методы (спектрографический и спектрометрический) атомно-эмиссионного анализа, примеси, дуга постоянного тока, дуга переменного тока, стандартные образцы состава, образцы для градуировки, правильность метода анализа, прецизионность метода анализа, абсолютная погрешность, предел повторяемости, предел промежуточной прецизионности, предел воспроизводимости, контроль точности результатов анализа

Редакция документа с учетом
изменений и дополнений подготовлена