allgosts.ru75. ДОБЫЧА И ПЕРЕРАБОТКА НЕФТИ, ГАЗА И СМЕЖНЫЕ ПРОИЗВОДСТВА75.160. Топливо

ГОСТ 33586-2015 Уголь активированный. Стандартный метод испытаний на адсорбцию из газовой фазы

Обозначение:
ГОСТ 33586-2015
Наименование:
Уголь активированный. Стандартный метод испытаний на адсорбцию из газовой фазы
Статус:
Действует
Дата введения:
04/01/2017
Дата отмены:
-
Заменен на:
-
Код ОКС:
75.160.10

Текст ГОСТ 33586-2015 Уголь активированный. Стандартный метод испытаний на адсорбцию из газовой фазы



МЕЖГОСУДАРСТВЕННЫЙ СОВЕТ ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ

(МГС)

INTERSTATE COUNCIL FOR STANDARDIZATION, METROLOGY AND CERTIFICATION

(ISC)

ГОСТ

33586-

2015


МЕЖГОСУДАРСТВЕННЫЙ

СТАНДАРТ

УГОЛЬ АКТИВИРОВАННЫЙ

Стандартный метод испытаний на адсорбцию из газовой фазы

Издание официальное

Москва

Стенда ртинформ 2016


Предисловие

Цели, основные принципы и основной порядок проведения работ по межгосударственной стан» дартизации установлены ГОСТ 1.0—92 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2—2009 «Межгосударственная система стандартизации. Стандарты межгосударственные. правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, применения, обновления и отмены»

Сведения о стандарте

1    ПОДГОТОВЛЕН Федеральным государственным унитарным предприятием «всероссийский научно-исследовательский институт стандартизации материалов и технологий» (ФГУП «ВНИИ СМТ») на основе собственного аутентичного перевода на русский язык стандарта, указанного в пункте 4

2    ВНЕСЕН Федеральным агентством по техническому регулированию и метрологии (Госстандарт)

3    ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 27 октября 2015 г. N» 81 -П)

За принятие проголосовали:

Краткое наименование страны по МК <ИСО 3166) ММ-97

Код страны

по МК (ИСО 3166) 004-97

Сокращенное наименование национального органа по стандартизации

Беларусь

BY

Госстандарт Республики Беларусь

Казахстан

К 2

Госстандарт Республики Казахстан

Киргизия

KG

Кыргызстандарт

Россия

RU

Росстандврт

Таджикистан

TJ

Таджикстандарт

4    Приказом Федерального агентства по техническому регулированию и метрологии от 17 марта 2016 г. № 173-ст межгосударственный стандарт ГОСТ 33586—2015 введен в действие в качестве национального стандарта Российской Федерации с 1 апреля 2017 г.

5    Настоящий стандарт идентичен стандарту ASTM D 5160—95 (Reapproved 2008) Standard Guide for Gas-Phase Adsorption Testing of Activated Carbon (Стандартное руководство no испытанию активированных углей на адсорбцию из газовой фазы).

Стандарт разработан комитетом ASTM D26 «Активированный уголь», и непосредственную ответственность за разработку метода несет подкомитет 028.04 «Методы анализа газовой фазы».

Перевод с английского языка (еп).

Наименование настоящего стандарта изменено относительно наименования указанного стандарта для приведения в соответствие с ГОСТ 1.5—2001 (подраздел 3.6).

Официальные экземпляры стандарта ASTM. на основе которого подготовлен настоящий межгосударственный стандарт ASTM. и стандартов, на которые даны ссылки, имеются в национальных органах по стандартизации.

Сведения о соответствии межгосударственных стандартов ссылочным стандартам приведены в дополнительном приложении ДА.

Степень соответствия — идентичная (ЮТ)

6 8ВЕДЕН ВПЕРВЫЕ

Информация об изменениях к настоящему стандарту публикуется в ежегодном информацией' ном указателе «Национальные стандарты», а текст изменений и поправок— в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано е ежемесячном информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также е информационной системе общего пользования—на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

© Стандартинформ. 2016

8 Российской Федерации настоящий стандарт не может быть полностью или частично воспроизведен. тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

in

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

УГОЛЬ АКТИВИРОВАННЫЙ

Стандартный метод испытаний на адсорбцию из газовой фазы Activated carbon. Standard method tor gas-phase adsorption tasting

Дата введения — 2017—04—01

1    Область применения

1.1    Настоящий стандарт относится к адсорбции активированным углем компонентов из газообразной среды и устанавливает метод определения динамической активности (N0) и предельной длины слоя активированного угля (4.). используемого для удаления определенного адсорбата из газового потока в условиях, устанавливаемых пользователем.

1.2    В настоящем стандарте все единицы измерения приведены в системе СИ. Другие единицы измерений в настоящий стандарт не включены.

1.3    В настоящем стандарте не предусмотрено рассмотрение всех вопросов обеспечения безопасности. связанных с его использованием. Пользователь стандарта несет ответственность за обеспечение соответствующих мер безопасности и охраны здоровья и определяет целесообразность применения законодательных ограничений перед его использованием. Характерные опасности приведены в разделе 7.

2    Нормативные ссылки

Для применения настоящего стандарта необходимы следующие ссылочные документы. Для недатированных ссылок применяют последнее издание ссылочного документа {включая все его изменения).

2.1 Стандарты ASTM1*

ASTM D 2652 Terminology Relating to Activated Carbon (Терминология, относящаяся к активированному углю)

ASTM D 2854 Test Method for Apparent Density of Activated Carbon (Метод определения насыпной плотности активированного угля)

ASTM D 2867 Test Methods for Moisture in Activated Carbon (Методы определения влаги в активированном угле)

ASTM D 3487 Test Methods for Carbon Tetrachloride Activity ot Activated Carbon (Методы определения активности активированного угля по четыреххлористому углероду)

ASTM Е 300 Practice for Sampling industrial Chemicals (Практика отбора проб промышленных химических продуктов).

^Уточнить ссылки не стандарты ASTM можно на сайте ASTM: или в службе поддержки клиентов ASTM: . В информационном томе ежегодного сборника стандартов (Annual Book of ASTM Standards) следует обращаться к сводке стандартов ежегодного сборника стандартов на странице сайта.

Издание официальное

3    Термины и определения

3.1    Определения:

3.1.1    npocKOK{breakthrough): Появление в эффлюенте адсорбируемого вещества воговоренной заранее концентрации.

3.1.2    Остальные термины, использованные в настоящем стандарте, определены в ASTM О 2652.

4    Сущность метода

4.1    Через слой активированного угля, количество которого известно, пропускают газовый поток, содержащий адсорбируемое вещество (адсорбат). Условия испытания, а именно: скорость потока газа, концентрация адсорбируемого вещества в этом потоке, температура, давление, относительная влажность газовой среды, устанавливаются и контролируются оператором. Измеряют время, прошедшее от начала испытания до проскока адсорбата. Испытание повторяют в тех же условиях, но при другом количестве активированного угля. Для большого количества практических систем зависимость времени проскока от количества адсорбента отображается прямой линией. Наклон этой прямой, а также значения. определяемые на оси абсцисс, используют для вычисления таких характеристик активированного угля в условиях испытания, как динамическая активность (выраженная в граммах адсорбата на 1 г адсорбента или в граммах адсорбата на 1 см3 адсорбента) и предельная длина слоя активированного угля d{.

5    Назначение и применение

5.1    Активированный уголь широко используется для очистки воздуха и других газов от газообразных примесей и паров. Пригодность активированного угля для той или иной цели взкачительной степени определяется его физическими и химическими свойствами. Метод, регламентируемый настоящим стандартом, позволяет определить динамические адсорбционные характеристики активированного угля по отношению к отдельному адсорбату при определенных условиях. Условия проведения испытания должны быть приближены к условиям, в которых используют активированный уголь (см. раздел 9).

5.2    Настоящий стандарт может быть также использован для изучения возможности повышения эффективности активированных углей при очистке от плохо адсорбируемых газов путем насыщения активированных углей другими веществами.

5.3    Настоящий стандарт не применим для оценки каталитического действия углей на процессы разложения озона или окисления S02 до S03.

5.4    Процедуры, регламентированные настоящим стандартом, могут быть использованы в процессах восстановления активности и регенерации активированных углей.

5.5    На рисунке 1 изображен профиль концентрации адсорбируемого вещества в слое активированного угля. 8 начале слоя существует зона, в которой концентрация адсорбируемого вещества равна его концентрации во входящем потоке газа. В этой зоне достигнуто равновесие процесса адсорбции. 8 оставшемся слое адсорбента, вплоть до самого конца, концентрация адсорбируемого вещества является концентрацией проскока для данного сечения слоя адсорбента. Чем короче зона массоперено-са (зона адсорбции), тем выше эффективность использования слоя адсорбента. Если длина слоя адсорбента меньше длины зоны массолереноса. то проскок адсорбируемого вещества на выходе наблюдается в первой же порции эффлюента.

5.6    С точки зрения эффективности использования для каждых условий следует подбирать активированный уголь с зоной массолереноса наименьшей длины. Однако, во многих случаях более важным фактором является высокая адсорбционная способность активированного угля, а не длина зоны мас-солереноса. Почти всегда решающее значение имеет перепад давления в слое адсорбента.

5.7    В некоторыхслучаях. например, при использовании активированных углей в респираторах для защиты от сверхтоксичных газов, таких как радиоактивный метилиодид. малая длина зоны массолере-носа (т. е. высокий коэффициент скорости адсорбции) является более важным фактором, чем максимальная адсорбционная способность. В других случаях, например, для регенерации растворителя, наибольшее значение имеет высокая динамическая активность адсорбента.

Концентрация

адсорбата

О    I

Расстояние от ехода а слой адсорбента

Рисунок 1 — Профиль концентрации адсорбируемого вещества в слое активированного угля

5.8    Хотя устройство промышленных адсорберов находится вне области применения настоящего стандарта, из его положений следуют некоторые выводы. Слой адсорбента должен быть максимально возможного диаметра, что позволяет снизить перепад давления в слое и увеличить до максимума количество используемого адсорбента. Если повышение перепада давления допустимо, то слой адсорбента увеличивают до возможно большей длины. При прочих равных условиях использование активированного угля с меньшим размером зерен приводит к укорачиванию зоны массопереноса и повышению эффективности работы слоя адсорбента, но при этом одновременно повышается перепад давления в слое. Если перепад давления имеет критическое значение, то уменьшить его можно под* бором такого активированного угля, который оказывает меньшее сопротивление потоку, чем другие.

5.9    Два параметра, определение которых регламентировано настоящим стандартом, могут быть использованы при выборе активированного угля и решении вопроса о конфигурации его слоя. В боль* шинстве случаев наилучшим активированным углем считают тот. который имеет по отношению к адсорбируемому веществу высокую динамическую активность (NJ в сочетании с короткой зоной массопереноса (малым значением de) в условиях, приближенных к условиям работы адсорбера.

6 Аппаратура

6.1 Трубка для пробы активированного угля

Чаще всего используют расположенную вертикально стеклянную трубку, диаметр которой превышает максимальный размер зерен активированного угля не менее чем в 12 раз или средний размер зерен — не менее чем в 16 раз. В нижней части трубки имеется гладкая горизонтальная опора для слоя адсорбента. Слой адсорбента должен быть равномерным на всем его протяжении для обеспечения единообразного профиля потока. Опора должна как можно меньше способствоватьсозданию перепада давления в слое адсорбента. По этой причине применение опоры из спекшегося стекла нежелательно. В качестве опоры может быть использована мелкая проволочная сетка из нержавеющей стали, поддерживаемая при необходимости более грубой сеткой. Для испытаний в трубках малого диаметра в качестве опоры может быть использовано доступное для приобретения нетканое полотно из полиэфирных волокон, обладающее высокой прочностью и. в то же время, оказывающее очень небольшое сопротивление потоку газа.

Применение 1 — Может быть использована специальней насадка, в которой удерживается слой адсорбента. позволяющая без лишних усилий получать воспроизводимые результаты. Насадку изготавливают из алюминия. она имеет диаметр 8.8 см и перфорированную поверхность. Насадку накручивают сверху вниз не слой адсорбента. Насадку, изображенную на рисунке 2. успешно используют для удержания слоя адсорбента длиной от 1 до 3.5 см.

Рисунок 2— Специальней насадка, используемая при испытании активированного угля на адсорбцию из газообразной среды

6.1.1    Присоединение потока газа, направляемого сверху вниз через пробу адсорбента, не должно вызывать смещения зерен. При работе с небольшими количествами адсорбента используют стеклянный переходник с внешним шлифом, соединенный с линией подачи газа. Шлиф позволяет легко соединять и отсоединять переходник и верхнюю часть трубки с адсорбентом, не тревожа при этом слой адсорбента. Вызвать смещения в небольшом слое адсорбента очень легко, поэтому после загрузки трубки ее положения менять не следует.

6.1.2    Длина трубки с пробой активированного угля должна быть в несколько раз больше предельной длины слоя активированного угля в условиях, при которых проводят испытания.

6.2    Устройство для заполнения трубки

Трубки с небольшим слоем активированного угля заполняют с помощью вибрационного устройства. описанного в ASTM D 2854. Диаметр нижней части воронки этого устройства должен быть равен диаметру заполняемой трубки. Желательно, чтобы расстояние от нижней части воронки до верхней части слоя адсорбента составляло не менее 10 см. Трубки со слоями адсорбента большей величины заполняют с помощью питающего устройства с сеткой в нижней части. Зерна активированного угля падают через отверстия сетки, распределяясь равномерно по всему сечению слоя. Площадь сечения на выходе питающего устройства должна быть равна площади сечения слоя адсорбента.

7 Меры предосторожности

7.1    С активированными углями, использованными для адсорбции токсичных и радиоактивных веществ, поступают далее в соответствии с действующим законодательством.

7.2    Хемосорбция некоторых газов и паров активированными углями может протекать с выделением большого количества тепла. При больших концентрациях адсорбируемого вещества количество выделяемого тепла может оказаться достаточным для возгорания активированного угля в присутствии кислорода. Примером может служить хемосорбция фосфина и арсина при их высоких концентрациях.

7.3    Другая опасность присутствует при адсорбции активированным углем из потока инертного газа больших количеств легко окисляющихся примесей, таких как гидразины. Если после этого активированный уголь попадает на открытый воздух, он может воспламениться из-за быстро протекающих на его поверхности реакций окисления. При адсорбции тех же веществ из воздуха при их низкой концентрации таких проблем не возникает, т. к. окисление происходит медленно в течение всего процесса адсорбции.

7.4    Адсорбция содержащихся в больших концентрациях сильных окислителей, таких как озон (образование озонидое). фтор, перекись водорода или пары азотной кислоты, может привести к возгоранию или взрыву активированного угля.

8 Отбор и подготовка активированного угля

8.1    Представительную порцию активированного угля отбирают и подготавливают к испытанию в соответствии с ASTM Е 300.

8.2    Если с помощью настоящего метода сравнивают действие адсорбентов разной крупности, то размеру зерен активированных углей уделяют особое внимание. При прочих равных условиях активированные угли с более мелкими зернами обладают большей скоростью адсорбции и. следовательно. меньшей предельной длиной слоя dt, чем активированные угли с более крупными зернами. Поэтому не следует сравнивать активированные угли сзернами разного размера по предельной длине слоя. Непосредственно сравнивать следует динамическую активность активированных углей N0. невзирая на крупность зерен, во многих случаях динамическая активность является более важным фактором, чем предельная длина слоя.

8.3    Поскольку предварительно адсорбированная активированным углем влага сильно влияет на адсорбцию органических паров и других газов, то содержание влаги в каждой пробе активированного угля, подвергающейся испытанию настоящим методом, определяют по ASTM О 2867. Поступающие в продажу активированные угли часто содержат до 20 % влаги (по массе}, что повышает их адсорбционную способность к химически активным газам.

8.4    Возможность использовать активированный уголь для той или иной цели часто устанавливают. определяя его адсорбционную активность по четыреххлористому углероду (carbon tetrachloride activity. СТА) no ASTM О 3467. Этот параметр позволяет судить об общем объеме микропор пробы активированного угля, но ничего не говорит об их распределении среди пор разного размера. При низких концентрациях адсорбата микропоры наименьшего размера являются самыми эффективными. 8 связи с этим при низких концентрациях адсорбата активированный уголь с большим количеством микропор очень малого размера может показать лучшую адсорбционную способность, чем уголь, у которого общий объем микропор больше (большая активность), но микропор очень малого размера меньше. На рисунке 3 отображена ситуация, когда высокая адсорбционная активность активированного угля не является предпочтительной. Наэтом рисунке уголье показателем СТА. равным 57,9%. был активирован таким образом, чтобы в нем была большая доля микропор очень малого размера.

Время

до проскоке 1%, мин


-у = -36.5 + 0,940х R = 0.999

-у =-17.01 * 0,571х R » 0.997

-у = -17.75 + 0.472х R = 1.000

-у = -14.48 ♦ 0.425х R = 0.995

-у = -14.36 + О.ЗЗвх R =0,997


—12x20 меш. кокос. СТА 57.9 %

* 12x20 меш, кокос. СТА 70.3 %

—•— прессованные пел петы 0 1 мм. СТА 78.9 % и 12x30 меш. угопъ. СТА 76.0%

—и— 12x20 меш. кокос. СТА 102 %

Условия испытания: скорость газового потока 15 дм3/мин: RH > 70 %: исходная концентраиия адсорбируемого вещества (диметилового эфира) 500 ppm: концентрация проскока 5 ppm; Т « 295‘К.Р > 98.3 кПа; диаметр

слоя адсорбента 6.8 см

Рисунок 3 — Зависимость времени наступления проскока от объема активированного угля

9 Выбор условий испытаний

9.1    Выбор условий испытания в соответствии с настоящим стандартом осуществляет сам пользователь. Предпочтительно проводить испытания при скорости потока газа и концентрации адсорбируемого вещества, аналогичным тем. при которых активированный уголь предполагается использовать. Другие условия, такие как относительная влажность, температура, давление и концентрация проскока, также следует подбирать какможно ближе к условиям реального использования адсорбента.

9.2    Зависимость адсорбционной активности активированного угля от температуры обусловлена влиянием температуры на изотерму адсорбции и скорость диффузии. Для адсорбции паров нелетучих органических соединений эта зависимость при небольших изменениях температуры обычно невелика [1]. Большее влияние температура оказывает на хемосорбцию.

9.3 Относительная влажность (relative humidity. RH) газового потока оказывает сильное влияние на адсорбционную способность и скорость адсорбции активированного угля (рисунок 4), поэтому данный параметр должен тщательно контролироваться, особенно если относительная влажность велика. На характеристики активированного угля также влияет влага, адсорбированная им еще до использования по прямому назначению (8.3). При больших значениях относительная влажность сильно зависит от температуры, поэтому при очистке газов с высокой влажностью необходим тщательный контроль температуры слоя адсорбента. Как правило, физическая адсорбция органических паров сухим свежим активированным углем мало зависит от RH. пока ее значение не превышает 65 %. Химическая адсорбция, а также каталитическая активность обычно более чувствительны к относительной влажности газовой среды.

Время до проскока 1 %. ч

3.

32

дм гмин :м3акт. утя

•з кокоса

103

I »

е

5

%

9

I

RH

5 % RH \

<Г-

,

•ч

S

S

V

ч

*

S

ч

10 100 1000

Концентрация тетрэхлорэгилема на входе в слой адсорбента ppm

Рисунок 4 — Зависимость времени до проскока (114) от концентрации адсорбируемого вещества на входе в слой адсорбента при различной относительной влажности (RH) газового потока

9.4 Тесты на ускорение испытания

При низких концентрациях адсорбируемого вещества испытание настоящим методом требует значительных затрат времени. Поэтому используют возможности, позволяющие ускорить испытание.

9.4.1 Наиболее простой способ ускорить испытание — это увеличить концентрацию адсорбата в газовом потоке. Поскольку при этом возрастает действие факторов, способствующих адсорбции, то динамическая активность того же слоя активированного угля (N0) по отношению к этому адсорбату увеличивается, что усложняет выбор крупности зерен слоя адсорбента. Наиболее значимым является тот факт, что влияние крупности зерен активированного угля на его адсорбционную способность при высокой и низкой концентрации адсорбата совсем не обязательно одинаково. Отличие углей с разным размером зерен может оказаться особенно значительным лри низких концентрациях адсорбата и высоких концентрациях водяных паров. Примером таких процессов может служить адсорбция одорантов активированными углями, при которых типичным является низкая концентрация адсорбируемого вещества и высокая относительная влажность газового потока. Отличие изотерм адсорбции разных углей намного более значимо для физической адсорбции, чем для хемосорбции.

Повышение концентрации адсорбата приводит также к нагреву слоя адсорбента, что сказывается как на адсорбционной способности, так и на скорости адсорбции. В промышленных адсорберах слой адсорбента работает почти в адиабатическом режиме, поэтому для более точного моделирования процесса на малой лабораторной колонке необходима ее термоизоляция. Это следует особо учитывать при химической адсорбции.

9.4.2 Другой, обычно более приемлемый, способ ускорения испытания — это увеличение скорое* ти газового потока при той же концентрации в нем адсорбируемого вещества. Хотя при этом изменяется скорость адсорбции (а следовательно, значение <SC). динамическая активность активированного угля. N0, чаще всего изменяется ненамного (2]. [3]. Это иллюстрирует рисунок 5. Была исследована адсорбция четыреххлорисгого углерода слоем активированного угля объемом 103 см3 при скорости потока газа, меняющейся от 11 до 100 дм3/мик. При этом концентрация четыреххлористого углерода во входящем потоке составляла 1000 ppm. а концентрацией проскока принято значение 5 ppm. По результатам испытаний построен график зависимости времени обнаружения проскока от времени прохождения газового потока через слой адсорбента.

Время до проскока 0.5 %. мин 350Л

О

Р


300-

250-


• у « -18.22 ♦ 604х R « 0 99863

200-

150-

100-


/

£


50-


105 см3 торфяных гранул 0 1 мм 1000 ppm СС14 при 50% RH и 22 *С концентрация проскока 5 ppm


1 ' ' ' I ' ' ' I 1 ' ' I ' ' ' \ ' ' ' I 0    0.2    0.4    0.6    0.6    1

Время прохождения газового потока через спой адсорбента, с

Рисунок 5 — Зависимость времени обнаружения проскока от времени прохождения газового потока

через слой адсорбента

Время прохождения гаэоеоголотока через слой адсорбента (е секундах), равное длине слоя адсорбента. деленной на линейную скорость потока {которая, в свою очередь, равна объемной скорости потока. деленной на площадь сечения слоя), может быть выражено через объем адсорбента V. см3, и объемную скорость потока Q. дм3/мин, следующей формулой

Практически линейный характер полученной зависимости означает, что е условиях проведенных испытаний динамическая активность активированного угля практически не зависит от скорости газового потока. В одном из исследований зафиксировано постоянство динамической активности при 30-кратном изменении скорости газового потока [2).

10 Проведение испытания

10.1    Введение адсорбируемого вещества в газовый поток

При проведении испытания должны быть известны концентрация адсорбата в несущем потоке газа, скорость потока и его относительная влажность, а также температура и давление.

10.1.1    Если адсорбируемое вещество при комнатной температуре представляет собой жидкость, то для введения его в измеряемый газовый лоток может быть использован шприц. Если это вещество обладает низкой летучестью, то для его испарения следует нагревать иглу или трубку шприца. Газовый лоток, содержащий адсорбируемое вещество, можно получить путем распыления в несущем газовом потоке насыщенных паров адсорбируемого вещества. Если адсорбируемое вещество при комнатной температуре является газом, то его поток при введении в несущий газ измеряют ротаметром или электронным измерителем потока. Все устройства, используемые для введения адсорбата, должны быть тщательно отградуированы и эксплуатироваться в соответствии сустаноеленными требованиями. В любом случае перед поступлением газового потока в слой адсорбента должно быть обеспечено тщательное перемешивание адсорбируемого вещества с несущим газом.

Примечание 2 — Для подачи адсорбируемого вещества непригодны трубки из пластичных поливиниловых материалов, которые обычно применяются в лабораториях. По сравнению со стеклянными трубками удобнее использовать тонкостенные трубки из полипропилена, но они могут поглощать некоторые вещества, такие как хлор или диоксид хлора. Позтому при изучении адсорбции химически активных газов, содержащихся в малых концентрациях. к выбору материалов следует подходить осторожно.

10.1.2    Всегда следует проверять соответствие истинной концентрации адсорбируемого вещества на входе в слой адсорбента и его концентрации, рассчитанной по показаниям измерительных приборов на линии подачи адсорбируемого вещества в несущий газ. Для этого используют различные аналитические методы.

10.2    Определение момента проскока

Для определения концентрации адсорбируемого вещества в потоке, прошедшем через слой адсорбента, может быть использовано много методов. Предпочтителен метод, позволяющий получить результат моментально. Применение растворов химических индикаторов, реагирующих на определенное вещество при его накоплении, может искажать зависимость времени обнаружения проскока от длины слоя адсорбента, если кривая изменения концентрации во времени не очень крутая [4]. Типичная кривая изменения концентрации показана на рисунке 6.

Проскок 5 ppm 142 мин

ЮОО ppm CCl4 в потоке воздуха 30 дм3/мии и 70 % RH 200 см адсорбента из кокоса 12 х 20 меш

|    10    20    30    40    50    60    70    80 90 100 110 120 130 140

start    Время, мин

Рисунок 6 — Пример кривой изменения концентрации

10.3    После принятия решения об условиях испытания (см. раздел 9) готовят трубки с разным количеством активированного угля, используя при этом аппаратуру, указанную в разделе 6. Во время испытания записывают время обнаружения проскока адсорбата и соответствующее количество активированного угля в слов. Количество активированного угля должно варьироваться в достаточно широком диапазоне для получения удовлетворительных результатов, поддающихся однозначной интерпретации.

10.4    Если адсорбируемое вещество обнаруживают на выходе из слоя адсорбента сразу, это означает, что длина слоя меньше предельной, и никакие результаты получены быть не могут. В этом случае необходимо изменить условия испытания или увеличить длину слоя адсорбента.

Примечание 3 — В работе [5] представлен обзор методов, используемых для получения газовых смесей и контроля их состава.

11 Обработка результатов

11.1    Строят график зависимости времени обнаружения на выходе адсорбируемого вещества в определенной концентрации (времени обнаружения проскока) от количества активированного угля в слое (см. рисунок 3). Количество активированного угля может быть выражено в единицах массы (г), объема (см3) или в виде длины слоя (см). Соотношение между величинами, выраженными в разных единицах, следующее:

Объем адсорбента =-Мессе едсщИент.-

Кажущаяся плотность адсорбенте

Длина слоя адсорбента =-Массе едорСента-

(Кажущаяся плотность адсорбента)(Ллощадь сечения слоя адсорбента)

Площадь сечения трубки с адсорбентом, см2, известна, кажущуюся плотность активированного угля, г/см3, определяют в соответствии с ASTM D 2854.

11.2    Если полученная зависимость линейна, вычисляют динамическую адсорбционную актив* ностьА/0активированногсугляпоотношению к адсорбируемому веществу в условиях испытания. Вычисления проводят, подставляя данные в уравнение Веллера, модифицированное Джонасомссоавтора ми. Данный подход описан в [6]. Для иллюстрации вычислений взяты данные рисунка 3. Исходя из модифицированного уравнения Веллера, наклон линейной зависимости времени проскока от объема адсорбента определяют по формуле

No

где Сй—концентрация адсорбата на входе в слой адсорбента, г/см3.

В представленном примере вычислений концентрацию диметилового эфира, выраженную в ppm, пересчитали на другую единицу измерения (г/см3), используя закон идеального газа. В условиях испытаний (температура окружающей среды 22 *С, атмосферное давление 98,3 кПа) концентрация 500 ppm равна 9,23 10*7 г/см3. В результате вычислений получены следующие значения динамической актив* ности N0. приведенные в таблице

Активированный угол»

N0, г эфира/см5 утя

12 К 20 меш. кокос. СТА 57.9 К

1,30-10‘*

12 *20 меш. кокос. СТА 70.3 %

7.94-10“*

Прессованные пеллеты диаметром 1 мм. СТА 73.9 К

6.56-10**

12 * 30 меш. уголь. СТА 76.0 %

5.91 -10‘*

12 *30 меш. кокос. СТА 102 %

4.67-10“*

Исследованные угли отличаются по своей динамической адсорбционной активности почти в три раза (максимальное отличие).

11.3    Величина, определяемая на оси абсцисс рисунка 3, представляет собой критический объем активированного угля. Критическую длину слоя de вычисляют делением критического объема адсорбента на площадь сечения слоя адсорбента (в данном случае 60.8 см2). Для всех пяти активированных углей в условиях испытания получено значение d4 приблизительно равное 0,6 см.

11.4    Наилучшим активированным углем считают уголь, который в условиях испытания, близких к условиям работы промышленного адсорбера, имеет по отношению к адсорбируемому веществу высокую динамическую активность N0 в сочетании с короткой зоной массопереноса dc.

Приложение ДА (справочное)

Сведения о соответствии межгосударственных стандартов ссылочным стандартам ASTM

Таблица ДА.1

Обозначен не ссылочного стандарта

Степень

соответствия

Обозначение и наименование соответствующего межгосударственного

стандарта

ASTM 026S2

ASTM 028S4

ASTM 02867

ASTM D3467

ют

ГОСТ 33584 Уголь активированный. Стандартный метод определения активности по четыреххлористому углероду

ASTM E300

*

* Соответствующий межгосударственный стандарт отсутствует. До его принятия рекомендуется испольэо-

еать перевод на русский язык данного стандарта.

Примечание — 8 настоящей таблице использовано следующее условное обозначение степени соответствия стандартов:

• ЮТ — идентичный стандарт.

Библиография

(1)    Nelson, G. О.. Correia. А. N.. and Herder. С. A.. Am. Ind. Нуд. Assoc. J. 37.1976. р. 280

(2)    Rehrmann. J, A . end Jonas, L. A.. Carbon 16.1978. р. 47

(3)    Ackley. М. W.. Am. Ind. Нуд. Assoc. J. 46.1986. p. 679

(4)    Klotz.l.. Cham.Rav. 39.1946.p.241

(6] Nelson. G.O.. Gas Mixtures: Preparation and Control. Lewis Publishers. 1992 (6) Wood. G. O.. and Moyer, E. S.. Am. Ind. Hyg. Assoc. J. 60.1989. p. 400

УДК 621.3.035.222.2:543.06:006.354    МКС 75.160.10    IDT

Ключевые слова: тест на ускорение испытания, активированный уголь, предельная длина слоя, динамическая адсорбционная активность

Редактор И.6. Кирипвмко Технический редактор ВЮ. Фотиеяа Корректор О.в. Лазарева Компьютерная верстка И.А. Напайкиной

Сдано я набор 30.03.20t6. Подписано е печать 04.04 2016. Формат 60*64 Гарнитура Ариап. Уел. печ. п. 1.86. Уч.-изд. п. 1.45. Тираж 3! э«. За». 941.

Издано и отпечатано ео ФГУП «СТАНДАР ТИН ФОРМ». <23995 Москва. Гранатный лер., 4. wtvw.goslinro.ru    mfo^goslmfoiu