allgosts.ru29. ЭЛЕКТРОТЕХНИКА29.130. Коммутационная аппаратура и аппаратура управления

ГОСТ IEC 60947-1-2017 Аппаратура распределения и управления низковольтная. Часть 1. Общие правила

Обозначение:
ГОСТ IEC 60947-1-2017
Наименование:
Аппаратура распределения и управления низковольтная. Часть 1. Общие правила
Статус:
Действует
Дата введения:
06.01.2019
Дата отмены:
-
Заменен на:
-
Код ОКС:
29.130.20

Текст ГОСТ IEC 60947-1-2017 Аппаратура распределения и управления низковольтная. Часть 1. Общие правила

МЕЖГОСУДАРСТВЕННЫЙ СО8ЕТ ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ (МГС)

INTERSTATE COUNCIL FOR STANDARDIZATION, METROLOGY AND CERTIFICATION (ISC)

ГОСТ

МЕЖГОСУДАРСТВЕННЫЙ

СТАНДАРТ


IEC 60947-1— 2017

АППАРАТУРА РАСПРЕДЕЛЕНИЯ И УПРАВЛЕНИЯ НИЗКОВОЛЬТНАЯ

Часть 1

Общие правила

(IEC 60947-1:2014,

Low-voltage switchgear and controlgear — Part 1: General rules,

IDT)

Издание официальное

Москва

Стандартинформ

2018


ГОСТ IEC 60947-1—2017

Предисловие

Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены в ГОСТ 1.0—2015 «Межгосударственная система стандартизации. Основные положения*» и ГОСТ 1.2—2015 «Межгосударственная система стандартизации. Стандарты межгосударственные. правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия. обновления и отмены»

Сведения о стандарте

1 ПОДГОТОВЛЕН Автономной некоммерческой организацией «Научно-технический центр «Энергия» (АНО «НТЦ «Энергия») на основе собственного перевода на русский язык англоязычной версии стандарта, указанного в пункте 5

2 ВНЕСЕН Федеральным агентством по техническому регулированию и метрологии

3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 30 ноября 2017 г. N9 52)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 31вв) 004—97

Код страны

по МК {ИСО Э1 бв) 004-97

Сокращенное наименование национального органа по стандартизации

Беларусь

BY

Госстандарт Республики Беларусь

Киргизия

KG

Кыргызстандарт

Россия

RU

Росстандарт

Узбекистан

UZ

Уэстандарг

4 Приказом Федерального агентства по техническому регулированию и метрологии от 9 ноября 2018 г. № 960-ст межгосударственный стандарт ГОСТ IEC 60947-1—2017 введен в действие в качестве национального стандарта с 1 июня 2019 г.

5 Настоящий стандарт идентичен международному стандарту IEC 60947-1:2014 «Устройство распределительное комплектное. Часть 1. Общие правила» («Low-voltage switchgear and controlgear — Part 1: General rules». IDT).

Международный стандарт IEC 60947-1:2014 разработан подкомитетом 17 В «Низковольтная аппаратура распределения и управления» Технического комитета ТС 17 «Аппаратура распределения и управления» Международной электротехнической комиссии (IEC).

наименование настоящего стандарта изменено относительно наименования указанного международного стандарта для приведения в соответствие с ГОСТ 1.5 (подраздел 3.6).

При применении настоящего стандарта рекомендуется использовать вместо ссылочных международных стандартов соответствующие им межгосударственные стандарты, сведения и киторых приведены в дополнительном приложении ДА

6 Настоящий межгосударственный стандарт взаимосвязан с Техническим регламентом Таможенного союза ТР ТС 004/2011 «О безопасности низковольтного оборудования», принятым Комиссией Таможенного союза 16 августа 2011 г., и реализует его существенные требования безопасности.

Соответствие взаимосвязанному межгосударственному стандарту обеспечивает выполнение существенных требований безопасности Технического регламента

7 ВЗАМЕН ГОСТ IEC 60947-1—2014

Информация об изменениях к настоящему стандарту публикуется в ежегодном информационном указателе «Национальные стандарты», а текст изменений и поправок — в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или от-мены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячном информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.nj)

€> Стандартинформ, оформление. 2018


В Российской Федерации настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

Hi

Г0СТ1ЕС 60947-1—2017

Содержание

1 Область применения..................................................................1

1.1 Область применения ..............................................................1

1.2 Нормативные ссылки.............................................................1

2 Термины и определения....................................................... 7

2.1 Общие термины .................................................................7

2.2 Коммутационные аппараты.......................................................10

2.3 Части коммутационных аппаратов ..................................................13

2.4 Функционирование коммутационных аппаратов ......................................17

2.5 Параметры и характеристики .....................................................20

2.6 Испытания.....................................................................28

2.7 Порты.........................................................................28

3 Классификация ....................................................................29

4 Характеристики ....................................................................29

4.1 Общие требования..............................................................30

4.2 Тип аппарата...................................................................30

4.3 Номинальные и предельные значения параметров главной цепи........................30

4.4 Категория применения...........................................................35

4.5 Цели управления ...............................................................35

4.6 вспомогательные цепи...........................................................36

4.7 Реле и расцепители .............................................................36

4.8 Координация с устройствами для защиты от коротких замыканий (УЗКЗ) .................36

4.9 Коммутационные перенапряжения.................................................36

5 Информация об аппарате............................................................36

5.1 Характер информации...........................................................36

5.2 Маркировка....................................................................37

5.3 Инструкции по монтажу, эксплуатации и обслуживанию................................38

5.4 Информация об окружающей среде................................................38

6 Нормальные условия эксплуатации, монтажа и транспортирования.........................38

6.1 Нормальные условия эксплуатации ................................................38

6.2 Условия транспортирования и хранения ............................................40

6.3 Монтаж........................................................................40

7 Требования к конструкции и работоспособности .........................................40

7.1 Требования к конструкции ........................................................40

7.2 Требования к работоспособности..................................................46

7.3 Электромагнитная совместимость (ЭМС) ...........................................52

8 Испытания ........................................................................53

8.1 Виды испытаний ................................................................53

8.2 Соответствие требованиям к конструкции...........................................54

8.3 Работоспособность..............................................................59

8.4 Испытания на ЭМС..............................................................7ь

Приложение А (рекомендуемое) Гармонизация режимов применения низковольтной

аппаратуры распределения и управления ..................................107

Приложение В (рекомендуемое) Пригодность аппаратов для эксплуатации

в нестандартных условиях...............................................110

Приложение С (обязательное) Степени защиты аппаратов в оболочках .......................111

Приложение D (рекомендуемое) Примеры зажимов и взаимосвязь зажима

с соединительным устройством...........................................116

Приложение Е (рекомендуемое) Описание метода регулирования цепи нагрузки...............121

Приложение F (рекомендуемое) Определение коэффициента мощности или

постоянной времени при коротких замыканиях ..............................123

Приложение G (рекомендуемое) Измерение расстояний утечки и воздушных зазоров...........124

Приложение Н (рекомендуемое) Соответствие между номинальным напряжением системы

питания и номинальным импульсным выдерживаемым напряжением аппарата ... 129 Приложение J (рекомендуемое) Вопросы, требующие согласования между изготовителем

и потребителем ........................................................131

Приложение К (обязательное) Процедура получения данных по применению

электромеханических контакторов в назначениях функциональной безопасности . 132 Приложение L (обязательное) Маркировка и отличительное цифровое обозначение

контактных выводов ....................................................139

Приложение М (обязательное) Испытание на воспламеняемость............................147

Приложение N (обязательное) Требования и испытания аппаратов с раздельной

степенью защиты по изоляции............................................150

Приложение О (рекомендуемое) Экологически сознательное проектирование.................153

Приложение Р (рекомендуемое) Кабельные наконечники для медных проводников.

присоединяемых к выводам низковольтной аппаратуры распределения и управления..........................................................161

Приложение О (обязательное) Специальные испытания влажным теплом, соляным туманом.

вибрацией и толчками ..................................................162

Приложение R (обязательное) Применение металлической фольги в электроизоляционных

испытаниях на доступных частях при оперировании или регулировке ...........166

Приложение S (обязательное) Цифровые вводы и выходы.................................169

Приложение! (обязательное) Электронные реле перегрузки с расширенными функциями......179

Приложение U (рекомендуемое) Примеры конфигураций цепей управления ..................163

Приложение V (рекомендуемое) Управление энергопотреблением с помощью коммутационной

аппаратуры и аппаратуры управления с целью экономии электроэнергии........165

Приложение W (обязательное) Процедура составления декларации на материал .............186

Приложение ДА (справочное) Сведения о соответствии ссылочных международных стандартов

межгосударственным стандартам........................................189

Библиография ......................................................................193

Введение

В настоящем стандарте объединены все требования стандартов на различные электрические аппараты. которые можно считать общими, отражающие специфические проблемы широкого диапазона применения, например превышение температуры, электроизоляционные свойства и т. л.

Требования и испытания для каждого конкретного типа низковольтных аппаратов распределения и управления определяются двумя стандартами:

1) настоящим основополагающим стандартом, определяемым в стандартах, относящихся к различным видам низковольтных аппаратов распределения и управления, как «ГОСТ IEC 60947-1»;

2) стандартом на конкретный вид (тип) низковольтных аппаратов распределения и управления, обозначаемым ниже как «стандарт на конкретный аппарат» или «стандарт на изделие».

Если для стандарта на конкретный вид (тип) аппарата действительно общее требование по настоящему стандарту, это должно быть четко оговорено в стандарте на конкретный вид (тип) аппарата со ссылкой на соответствующий пункт настоящего стандарта, например «ГОСТ IEC 60947-1 (пункт 7.2.3)».

Отдельные требования настоящего стандарта могут не относиться к какому-то стандарту на аппарат конкретного вида (типа), в этом случае на неприменимое требование в стандарте на аппарат конкретного вида (типа) не ссылаются.

Если требование настоящего стандарта оценивается как недостаточное в конкретном случае, но не может нарушаться без серьезного технического обоснования, стандарт на аппарат конкретного вида (типа) дополняют другими требованиями.

Список всех частей серии МЭК 60947, под общим названием «Аппаратура распределения и управления низковольтная», можно найти на веб-сайте IEC.

Настоящий стандарт подготовлен по консолидированной версии IEC 60947-1, издание номер 5.2. Она состоит из пятого издания (2007-06) (документы 17В/1550 / FDIS и 178 /15631 РВД). его поправки 1 (2010-12) [документы 17В I1710/ FDIS и 17В /1721 / РВД) и его поправки 2 (2014-09) (документы 121А/15 / FDIS и 121М 21 / РВД), техническое содержание идентично базовой редакции и поправкам к ней.

Основные изменения относительно предыдущего издания следующие:

- внесены изменения в содержание и структуру подраздела 7.1;

- введены новые требования и параметры, касающиеся испытаний электромагнитной совместимости:

- внесены изменения в приложения Т. U. V. W;

- введены новые приложения Q. R и S;

- внесены изменения в содержание таблиц А.1. К.1. К.2. К.З. Т.1;

- внесены изменения в рисунки К.1, О.1, Т.1, U.1. U.2, U.3. U.6.

ГОСТ IEC 60947-1—2017

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

АППАРАТУРА РАСПРЕДЕЛЕНИЯ И УПРАВЛЕНИЯ НИЗКОВОЛЬТНАЯ

Насть 1

Общие правила

Low-vottage switchgear and controlgear.

Part 1. General rules

Дата введения —2019—06—01

1 Область применения

Целью настоящего стандарта является гармонизация правил и требований общего характера, относящихся к низковольтной коммутационной аппаратуре и аппаратуре управления (далее — аппараты), с целью их унификации для соответствующих классов аппаратов и устранения необходимости испытании по разным стандартам.

1.1 Область применения

Настоящий стандарт распространяется на аппараты, предназначенные для эксплуатации в электрических цепях номинальным напряжением до 1000 8 переменного тока или до 1500 В постоянного тока.

Требования настоящего стандарта распространяются на аппараты конкретного вида (типа) при наличии в стандартах на эти аппараты соответствующих ссылок.

Настоящий стандарт устанавливает правила и общие требования по безопасности к аппаратам включая:

- определения;

- характеристики;

- информацию, прилагаемую к аппарату;

- нормальные условия эксплуатации, монтажа и транспортирования;

- требования к конструкции и работоспособности;

- проверку характеристик и работоспособности:

- аспекты окружающей среды.

Настоящий стандарт не распространяется на низковольтные комплектные устройства распределения и управления, охватываемые стандартами серии IEC 61439.

1.2 Нормативные ссылки

Для применения настоящего стандарта необходимы следующие ссылочные документы. Для датированных ссылок применяют только указанное издание ссылочного документа, для недатированных ссылок — последнее издание ссылочного документа (включая все изменения к нему).

IEC 60050-151:2001, International Electrotechnical Vocabulary (IEV) — Chapter 151: Electrical and magnetic devices (Международный электротехнический словарь. Глава 151. Электрические и магнитные устройства)

IEC 60050-441:1984. International Electrotechnical Vocabulary (IEV) — Chapter 441: Switchgear, controlgear and fuses Amendment 1 (2000) (Международный электротехнический словарь. Глава 441. Коммутационная аппаратура, аппаратура управления и предохранители)

Издание официальное

IEC 60050-604:1987. International Electrotechnical Vocabulary (IEV) — Chapter 604: Generation, transmission and distribution of electricity — Operation. Amendment 1 (1998) (Международный электротехнический словарь. Глава 604. Получение, передача и распределение электроэнергии. Эксплуатация. Изменение 1)

IEC 60050-826:2004, International Electrotechnical Vocabulary (IEV) — Chapter 826: Electrical installations (Международный электротехнический словарь. Глава 826. Электрические установки)

IEC 60060. High-voltage test techniques (Методы испытаний высоким напряжением)

IEC 60068-1:19884 Environmental testing — Part 1: General and guidance. Amendment 1 (1992) (Испытание на воздействие внешних факторов. Часть 1. Общие положения и руководство. Изменение 1)

IEC 60066-2-1:19902‘. Environmental testing — Part 2-1: Tests — Tests A: Cold. Изменения 1 (1993). 2 (1994) (Испытания на воздействия внешних факторов. Часть 2-1. Испытания. Испытания А: Холод)

IEC 60068-2>2:19743\ Environmental testing — Part 2-2: Tests — Tests В: Dry heat. Изменения 1 (1993), 2 (1994) (Испытания на воздействие внешних факторов. Часть 2. Испытания. Испытание В: Сухое тепло)

IEC 60068-2-6:19954 Environmental testing — Part 2-6: Tests — Test Fc: Vibration (sinusoidal) (Испытания на воздействие внешних факторов. Часть 2. Испытания. Испытание Fc: Вибрация (синусоидальная))

IEC 60068-2-27:19874 Environmental testing — Part 2-27: Tests — Test Ea and guidance: Shock (Испытания на воздействие внешних факторов. Часть 2. Испытания. Часть 2-27: Испытания. Испытание Еа и руководство: Удар)

IEC 60066-2-30:2005. Environmental testing — Part 2-30: Tests — Test Db: Damp heat, cyclic (12 h ♦ 12 h cycle) [Испытания на воздействия внешних факторов. Часть 2. Испытания. Испытание Db и руководство: Влажное тепло, циклическое (12+12-часовой цикл)]

IEC 60068-2-52:1996. Environmental testing — Part 2-52: Tests — Test Kb: Salt mist, cyclic (sodium chloride solution) (Испытания на воздействие внешних факторов. Часть 2. Испытания. Испытание КЬ: Соляной туман, циклическое испытание (раствор хлорида натрия)]

IEC 60068-2-78:2001в|. Environmental testing — Part 2-78: Tests — Test Cab: Damp heat, steady state (Испытание на воздействие внешних факторов. Часть 2-78. Испытания. Испытание Cab: Влажное тепло. установившийся режим)

IEC 60071-1:19934 Insulation co-ordination — Part 1: Definitions, principles and rules (Координация изоляции. Часть 1. Определения, принципы и правила)

IEC 60073:2002. Basic and safety principles for man-machine interface, marking and identification — Coding principles for indicators and actuators (Основополагающие принципы и принципы безопасности 1 2 для интерфейса человек — машина, маркировка и идентификация. Принципы кодирования для индикаторов и пускателей}

IEC 60085:2004”. Electrical insulation — Thermal classification (Электрическая изоляция. Классификация по термическим свойствам)

IEC 60092-504:200121. Electrical installations in ships — Part 504: Special features — Control and instrumentation (Электроустановки на морских судах. Часть 504. Специальные требования. Управление и инструментарий)

IEC 60112:20034 Method for the determination of the proof and the comparative tracking indices of solid insulating materials (Материалы электроизоляционные твердые. Методы определения нормативного и сравнительного индексов трекингостойкости)

IEC 60216-1. Guide for the determination of thermal endurance properties of electrical insulating materials (Материалы электроизоляционные. Характеристики теплостойкости. Часть 1. Процедуры испытаний на старение и оценка результатов)

IEC 60228:2004. Conductors of insulated cables (Проводники изолированных кабелей)

IEC 60269-1:19984>. Low-voltage fuses — Part 1: General requirements. Amendment 1 (2005) (Предохранители плавкие низковольтные. Часть 1. Общие требования)

IEC 60269-2:19864 Low-vottage fuses — Part 2: Supplementary requirements for fuses for use by authorized persons (fuses mainly for industrial application). Изменение 1 (1995), 2 (2001) (Предохранители плавкие низковольтные. Часть 2. Дополнительные требования к плавким предохранителям, используемым квалифицированным персоналом)

IEC 60300-3-5:2001. Dependability management — Part 3-5: Application guide — Reliability test conditions and statistical test principles (Управление надежностью. Часть 3-5. Условия испытаний на надежность и принципы статистического контроля)

IEC 60344:19804 Guide to the calculation of resistance of plain and coated copper conductors of low-frequency cables and wires. Amendment 1 (1985) (Расчет электрического сопротивления постоянного тока медных проводников с покрытием и без него для низкочастотных кабелей и проводов. Руководство по применению)

IEC 60364-4-44:20014 Electrical installations of buildings — Part 4-44: Protection for safety — Protection against voltage disturbances and electromagnetic disturbances. Изменение 1 (2003) (Электрические установки низкого напряжения. Часть 4-44. Защита для обеспечения безопасности. Защита от резких отклонений напряжения и электромагнитных возмущений) 3 4 5 6 7 8 9 10

IEC 6041 Z-DB^OO?1'. Graphical symbols for use on equipment {Графические обозначения, применяемые на оборудовании)

IEC 60445:19994 Basic and safety principles for man-machine interface, marking and identification — Identification of equipment terminals and of terminations of certain designated conductors, including general rules of an alphanumeric system (Интерфейс человек — машина, маркировка, идентификация. Основные принципы и принципы безопасности. Идентификация выводов, концов проводов и проводников электрооборудования)

IEC 60447:2004, Basic and safety principles for man-machine interface, marking and identification — Actuating principles (Интерфейс человек — машина. Основные принципы безопасности, маркировка и идентификация. Принципы включения)

IEC 60529:198911 12 13 14 15 16>. Degrees of protection provided by enclosures (IP code). Изменение 1 (1999) (Степени защиты, обеспечиваемые корпусами (Код IP)]

IEC 60617-08:20004 Graphical symbols for diagrams (Графические символы для диаграмм)

IEC 60664-1:2007. Insulation coordination for equipment within low-voltage systems — Part 1: Principles. requirements and tests (Координация изоляции для оборудования в низковольтных системах. Часть 1. Принципы, требования и испытания)

IEC 60664-3:20034 Insulation coordination for equipment within low-voltage systems — Part 3: Use of coating, potting or moulding for protection against pollution (Координация изоляции для оборудования в низковольтных системах. Часть 3. Использование покрытия, герметизации или заливки для защиты от загрязнения)

IEC 60664-5:2007. Insulation coordination for equipment within tow-voltage systems — Part 5: Comprehensive method for determining clearances and creepage distances equal to or less than 2 mm (Координация изоляции для оборудования в низковольтных системах. Часть 5. Комплексный метод определения зазоров и путей утечки, равных или менее 2 мм)

IEC 60695-2*2:1991. Fire hazard testing — Part 2: Test methods — Section 2: Needle-flame test. Amendment 1 (1994) (Испытание на пожарную опасность. Часть 2.2. Методы испытаний. Испытание игольчатым пламенем)

IEC 60695-2-10:20004 Fire hazard testing — Part 2-10: Giowing/hot-wire based test methods — Glow-wire apparatus and common test procedure (Испытание на пожарную опасность. Часть 2-10. Методы испытания с применением накаленной/нагретой проволоки. Аппаратура и общие положения методики испытания накаленной проволокой)

IEC 60695-2-11:200017>. Fire hazard testing — Part 2-11: GlowingZhot-wire based test methods — Glow-wire flammability test method for end-products (Испытания на пожароопасность. Часть 2-11. Методы испытаний раскаленноиУгорячей проволокой. Метод испытания конечной продукции на воспламеняемость под действием раскаленной проволоки)

IEC 60695-2-12. Fire hazard testing — Part 2-12: Gfowing/hot-wire based test methods — Glow-wire flammability test method for materials [Испытания на пожарную опасность. Часть 2-12. Методы испытания накаленной/нагретой проволокой. Метод определения индекса воспламеняемости материалов накаленной проволокой (ИВНК)]

IEC 60695-11-10:1999’). Fire hazard testing — Part 11-10: Test flames — 50 W horizontal and vertical flame test methods. Изменение 1 (2003) (Испытания на пожароопасность. Часть 11-10. Пламя для испытания. Методы испытания горизонтальным и вертикальным пламенем 50 Вт)

IEC 60947-5-1:20032>. Low-voltage switchgear and confrolgear — Part 5-1: Control circuit devices and switching elements — Electromechanical control circuit devices. Amendment 1 (2009) (Аппаратура коммутационная и механизмы управления низковольтные комплектные. Часть 5-1. Устройства и коммутационные элементы цепей управления. Электромеханические устройства цепей управления)

IEC 60947-8:20033'. Low-voltage switchgear and controlgear — Part 8: Control units for built-in thermal protection (PTC) for rotating electrical machines. Amendment 1 (2006) (Аппаратура коммутационная и механизмы управления низковольтные комплектные. Часть 8. Блоки управления для встроенной термической защиты для вращающихся электрических машин)

IEC 60981:2004. Extra heavy-duty electrical rigid steel conduits (Кабелепроводы жесткие стальные для электроустановок, используемые в сверхтяжелых режимах)

IEC 60999-1:1999. Connecting devices — Electrical copper conductors — Safety requirements for screw-type and screwless-type clamping units — Part 1: General requirements and particular requirements for clamping units for conductors from 0.2 mm2 up to 35 mm2 (included) [Устройства соединительные. Медные электропровода. Требования безопасности к винтовым и безвинтовым зажимам. Часть 1. Общие и частные требования к зажимам для проводов сечением от Q2 до 35 мм2 (включительно))

IEC 60999-2:2003. Connecting devices — Electrical copper conductors — Safety requirements for screw-type and screwless-type damping units — Part 2: Particular requirements for damping units for condudors above 35 mm2 up to 300 mm2 (included) [Устройства соединительные. Провода электрические медные. Требования безопасности к зажимным элементам винтового и безвинтового типа. Часть 2. Частные требования к зажимным элементам для проводников площадью от 35 до 300 кв. мм (включительно)]

IEC 61000-3*2:200518. Electromagnetic compatibility (EMC) — Part 3-2: Limits — Limits for harmonic current emissions (equipment input currents 16 A per phase) Amendment 1 (2008). 2 (2009) [Электромагнитная совместимость. Часть 3. Пределы. Раздел 2. Пределы выбросов для синусоидального тока (оборудование с входным током меньше или равным 16 А на фазу)]

IEC 61000-3-3:2013. Electromagnetic compatibility (EMC) — Part 3-3: Limits: Limitation of voltage changes, voltage fluctuations and flicker in public low-voltage supply systems for equipment with rated current < 16 A per phase and not subject to conditional connection. (Электромагнитная совместимость. Часть 3-3. Пределы. Ограничение изменений напряжения, флуктуации и мерцания напряжения в общественных распределительных низковольтных системах питания для оборудования с номинальным током не более 16 А на фазу и не подлежащего условному соединению)

IEC 61000-4-2:2008. Electromagnetic compatibility (EMC) — Part 4-2: Testing and measurement techniques — Electrostatic discharge immunity test (Электромагнитная совместимость. Часть 4-2. Методики испытаний и измерений. Испытание на невосприимчивость к электростатическому разряду)

IEC 61000-4-3:20061>, Electromagnetic compatibility (EMC) — Part 4-3: Testing and measurement techniques — Radiated, radio-frequency, electromagnetic field immunity test. Изменения 1 (2007), 2 (2010) (Электромагнитная совместимость. Часть 4-3. Методики испытаний и измерений. Испытание на устойчивость к воздействию электромагнитного поля с излучением на радиочастотах)

IEC 61000-4-4:2012. Electromagnetic compatibility (EMC) — Part 4-4. Testing and measurement techniques — Electrical fast tran&ient/burst immunity test (Электромагнитная совместимость. Часть 4-4. Методы испытаний и измерений. Испытание на невосприимчивость к быстрым переходным процессам и всплескам)

IEC 610004-5:20052', Electromagnetic compatibility (EMC) — Part 4-5: Testing and measurement techniques — Surge immunity test (Электромагнитная совместимость. Часть 4. Методики испытаний и измерений. Раздел 5. Испытание на невосприимчивость к выбросу напряжения)

IEC 61000-4-6:2013. Electromagnetic compatibility (EMC) — Part 4-6: Testing and measurement techniques: Immunity to conducted disturbances, induced by radio-frequency fields (Электромагнитная совместимость. Часть 4-6. Методики испытаний и измерений. Защищенность от помех по цепи питания, наведенных радиочастотными полями)

IEC 61000-4-8:2009, Electromagnetic compatibility (EMC) — Part 4-8: Testing and measurement techniques: Power frequency magnetic field immunity test (Электромагнитная совместимость. Часть 4-8. Методики испытаний и измерений. Испытание на помехоустойчивость в условиях магнитного поля промышленной частоты)

IEC 61000-4-11:2004. Electromagnetic compatibility (EMC) — Part 4-11: Testing and measurement techniques — Voltage dips, short interruptions and voltage variations immunity tests (Электромагнитная совместимость. Часть 4-11. Методики испытаний и измерений. Кратковременные понижения напряжения, короткие отключения)

IEC 61000-4-13:20024 Electromagnetic compatibility (EMC) — Part 4-13: Testing and measurement techniques — Harmonics and inteiharmonics including mains signalling at a.c. power port, low-frequency immunity tests. Изменение 1 (2009) (Электромагнитная совместимость. Часть 4-13. Методики испытаний и измерений. Испытания низкочастотной помехозащитное™ от воздействия гармоник и промежуточных гармоник, включая сетевые сигналы, передаваемые в сеть переменного тока)

IEC 61000-6-2:20054). Electromagnetic compatibility (EMC) — Part 6-2: Generic standards — Immunity for industrial environments (Электромагнитная совместимость. Часть 6-2. Общие стандарты. Невосприимчивость к промышленной окружающей среде)

IEC 61131-2:2003^. Programmable controllers — Part 2: Equipment requirements and tests (Микроконтроллеры программируемые. Часть 2. Требования к оборудованию и испытания)

IEC 61140:20014 Protection against electric shock — Common aspects for installation and equipment. Amendment 1 (2004) (Защита от поражения электрическим током. Общие аспекты, связанные с электроустановками и электрооборудованием) 19

IEC 61180 (все части), High-voltage test techniques for low voltage equipment (Техника испытаний высоким напряжением низковольтного оборудования)

IEC 61508 (все части). Functional safety of electricaVelectronic/programmabie electronic safety-related systems (Функциональная безопасность электрических/электронных/программируемых электронных систем, связанных с безопасностью)

IEC 61557-2. Electrical safety in low voltage distribution systems up to 1000 V a. c. and 1500 Vd. c. — Equipment for testing, measuring or monitoring of protective measures — Part 2: Insulation resistance (Электробеэопасность распределительных низковольтных сетей до 1000 В переменного тока и 1500 В постоянного тока. Оборудование для испытания, измерения или контроля средств защиты. Часть 2. Сопротивление изоляции)

IEC 61649:2008. Weibull analysis (Анализ Вейбулла)

IEC 62061:2005Ч Safety of machinery — Functional safety of safety — related electrical, electronic and programmable electronic control systems (Безопасность в машиностроении. Функциональная безопасность электрических, электронных и программируемых электронных систем, связанных с безопасностью)

IEC 62430:2009. Environmentally conscious design for electrical and electronic products (Экологически сознательное проектирование электрических и электронных изделий)

IEC 62474:201220 21'. Material declaration for products of and for the electrotechnical industry (Декларация о соответствии материалов для изделий электротехнической промышленности)

CISPR 11:20094 Industrial, scientific and medical — Radio-frequency disturbance characteristics — Limits and methods of measurement. Amendment 1 (2010) (Оборудование промышленное, научное, медицинское. Характеристики радиочастотных помех. Пределы и методы измерений)

ISO 13849-1:20064 Safety of machinery — Safety-related parts of control systems — Part 1: General principles for design (Безопасность в машиностроении. Элементы систем управления, связанные с безопасностью. Часть 1. Основные принципы проектирования)

2 Термины и определения

Примечание — Большинство терминов и определений, перечисленных в настоящем разделе, приведены в соответствии с Международным электротехническим словарем (МЭС). В таких случаях в скобках после термина приводится осыпка на IEC (первая группа из грех цифр означает осыпку на главу IEC). Если в определение из 1ЕС внесена поправка, ссылка на IEC приведена не после термина, а в примечании.

2.1 Общие термины

2.1.1 _

коммутационная аппаратура и аппаратура управления (switchgear and controlgear): Коммутационная аппаратура и аппаратура управления с присоединенными аппаратами коммутации и аппаратами управления и их комбинации для управления, измерений, защиты и регулирования, а также комплектные устройства аппаратов и оборудования с взаимными соединениями, вспомогательными устройствами, оболочками и поддерживающими конструкциями.

рЕС 60050-441)

2.1.2

коммутационная аппаратура (switchgear): Коммутационные аппараты и их комбинации с присоединенными аппаратами управления, измерений, защиты и регулирования, а также комплектные устройства аппаратов и оборудования с взаимными соединениями, вспомогательными устройствами. оболочками и поддерживающими конструкциями, предназначенные для использования при генерировании. передаче, распределении и преобразовании электроэнергии.

рЕС 60050-441]

2.1.3

аппаратура управления (controlgear): Коммутационные аппараты и их комбинации с присоединенными аппаратами управления, измерений, защиты и регулирования, а также комплектные устройства аппаратов и оборудования с взаимными соединениями, вспомогательными устройствами. оболочками и поддерживающими конструкциями, предназначенные для управления аппаратами, потребляющими электроэнергию.

[1ЕС 60050-441]

2.1.4

сверхток (over-current): Ток. превышающий номинальный.

[IEC 60050-441]

2.1.5

короткое замыкание (short circuit): Случайный или преднамеренный проводящий путь между двумя или более проводящими частями, принуждающий разность электрических потенциалов между этими проводящими частями становится равной или приближаться к нулю.

рЕС 60050-151]

2.1.6

ток короткого замыкания (short-circuit current): Сверхток. появляющийся в результате короткого замыкания, вызываемого повреждением или неправильным соединением в электрической цепи.

рЕС 60050-441]

2.1.7

перегрузка (overload): Режим работы неповрежденной электрической цепи, вызывающий сверхток.

рЕС 60050-441]

2.1.8 ток перегрузки (overload current): Сверхток. возникающий в неповрежденной электрической цепи.

2.1.9

температура окружающего воздуха (ambient air temperature): Определенная температура воздуха при предписанных условиях, окружающего весь коммутационный аппарат или предохранитель.

рЕС 60050-441]

Примечание — Для коммутационных аппаратов или предохранителей, установленных внутри оболочки. это температура воздуха вне оболочки.

2.1.10

токопроводящая часть (conductive part): Часть, способная проводить ток. но не обязательно предназначенная для проведения рабочего тока.

рЕС 60050-441]

2.1.11_

открытая токопроводящая часть (exposed conductive part): Токопроводящая часть, доступная непосредственному прикосновению, которая обычно не находится под напряжением, но может оказаться под напряжением в случае повреждения.

[IEC 60050-441]

Примечание — Такими открытыми токопроводящими частями являются стенки оболочек, рукоятки управления и рр.

2.1.12_

наружная токопроводящая часть (extraneous conductive part): Токопроводящая часть, не входящая в конструкцию аппарата, однако несущая потенциал, как правило, земли.

[IEC 60050-826]

2.1.13 _

токоведущая часть (live part): Проводник или проводящая часть, находящаяся под напряжением е нормальных условиях эксплуатации, в том числе нулевой рабочий проводник, но не проводник PEN (защитный нулевой провод).

ПЕС 60050-826]

Примечание — Термин не обязательно подразумевает опасность электрического удара.

2.1.14 _

защитный проводник (условное обозначение РЕ) (protective conductor (symbol РЕ)]: Проводник. необходимый в некоторых случаях для защиты от электрического удара при электрическом присоединении какой-либо из следующих частей:

- открытой токопроводящей части аппарата;

- наружной токопроводящей части аппарата:

« главного вывода заземления аппарата;

- электрода заземления;

- заземляемой точки источника питания или искусственной нейтрали.

ПЕС 60050-826]

2.1.15 _

нулевой рабочий проводник (условное обозначение N) (neutral conductor (symbol N)]: Проводник, присоединенный к нейтральной точке системы и способствующий передаче электрической энергии.

ПЕС 60050-826]

Примечание — В некоторых случаях и в установленных условиях возможно объединение функций нулевого рабочего и защитного проводников в одном проводнике с условным обозначением PEN.

2.1.16 оболочка (enclosure): Часть комплекта, обеспечивающая нормированную степень защиты оборудования от внешних воздействий и нормированную степень защиты от приближения или соприкосновения с частями комплекта, находящимися под напряжением, или подвижными частями.

Примечание — Данное определение аналогично формулировке IEC 60050-441-13-01. относящейся к комплектным устройствам.

2.1.17 неотделимая оболочка (integral enclosure): Оболочка, составляющая неотъемлемую часть аппарата.

2.1.18

категория применения (коммутационного аппарата или плавкого предохранителя) (utilization category (for a switching device or a fuse)]: Комбинация требований, относящихся к состоянию, в котором коммутационный аппарат или плавкий предохранитель выполняет свои функции, отобранных в качестве типичных для характерной группы практических применений.

(IEC 60050-441]

Примечание — Данные требования могут затрагивать, например, значения включающей способности (при ев наличии), отключающей способности и другие характеристики, подключенные цепи, условия эксплуатации и поведения аппарата.

2.1.19 разъединение (функция) [isolation(isolating function)]: Действие, направленное на отключение питания всей установки или ее отдельной части путем отсоединения этой установки или ее части от любого источника электрической энергии по соображениям безопасности.

2.1.20

электрический удар (electric shock): Патофизиологический эффект, обусловленный прохождением электрического тока через тело человека или животного.

(1ЕС 60050-826}

2.1.21 изготовитель (manufacturer): В интересах настоящего стандарта любое лицо, фирма или организация, несущая ответственность за:

- проверку изделия на соответствие стандарту или стандартам;

- предоставление информации об изделии согласно разделу 5.

Примечание — Например, в случае пускателей с защитой, собранных по инструкциям поставщика комплектующих частей, изготовитель по сути берет на себя ответственность по их сборке.

2.1.22 твердая изоляция (solid insulation): Часть твердого изоляционного материала, размещенная между двумя токопроводящими частями.

2.1.23 перегородка для координации изоляции (insulation coordination barrier): Часть из изоляционного материала, не являющаяся частью, выполненной за одно целое, предусмотренная для увеличения расстояний утечки или воздушных зазоров или тех и других.

2.2 Коммутационные аппараты

2.2.1_

коммутационный аппарат (switching device): Аппарат, предназначенный для включения или отключения тока в одной или нескольких электрических цепях.

[IEC 60050-441]

Примечание — Коммутационный аппарат может выполнять одну из этих операций или обе.

2.2.2 _

контактный коммутационный аппарат (mechanical switching device): Коммутационный аппарат. предназначенный для замыкания и размыкания одной или нескольких электрических цепей с помощью размыкаемых контактов.

[IEC 60050-441]

Примечание — Контактный коммутационный аппарат может быть охарактеризован в соответствии со средой, в которой era контакты размыкаются и замыкаются, например воздух, элегаз, масло.

2.2.3 полупроводниковый коммутационный аппарат (semiconductor switching device): Коммутационный аппарат, предназначенный для включения и/или отключения тока в электрической цепи посредством воздействия на регулируемую проводимость полупроводника.

Примечание — Данное определение отличается от формулировал, приведенной в IEC 60050-441, поскольку полупроводниковый коммутационный аппарат рассчитан также на отключение тока.

2.2.4

предохранитель (fuse): Устройство, которое путем разрушения одного или нескольких специально предназначенных элементов размыкает цель, в которую оно включено, отключая ток. когда он превышает заданное значение в течение достаточного времени и содержит все детали, которые образуют комплектное устройство.

[IEC 60050-441]

2.2.5

заменяемый элемент (fuse-link): Часть предохранителя, содержащая плавкий элемент (плавкие элементы), предназначенная для замены после срабатывания предохранителя.

ПЕС 60050-441]

2.2.6_

плавкий элемент (fuse-element): Часть заменяемого элемента, предназначенная для расплавления под воздействием тока, превышающего определенное значение. 8 течение определенного времени.

ПЕС 60050-441)

2.2.7 _

комбинация «предохранитель — коммутационный аппарат» (fuse-combination unit): Комбинация контактного коммутационного аппарата и одного или нескольких предохранителей в виде комплектного устройства, собранного изготовителем или в соответствии с его инструкцией.

Примечание — Комбинации с предохранителями могут быть снабжены расцепителем с ударником так. что срабатывание ударника вызывает отключение всех полюсов присоединенного контактного коммутационного аппарата.

ПЕС 60050-441)

2.2.8 разъединитель (disconnector): Контактный коммутационный аппарат, в разомкнутом положении соответствующий требованиям к функции разъединения.

Примечание — Данное определение отличается от формулировки, приведенной в IEC 60050-441 (441-14-05). поскольку требования к функции разъединения не ограничиваются соблюдением изолирующего промежутка.

2.2.9 _

контактный выключатель нагрузки (switch (mechanical)]: Контактный коммутационный аппарат. способный включать, проводить и отключать токи при нормальных условиях в цепи, в том числе при нормированных рабочих перегрузках, а также выдерживать в течение нормированного времени токи при нормированных ненормальных условиях в цепи, таких как короткое замыкание.

ПЕС 60050-441)

Примечание — Выключатель нагрузки может включать, но не отключать токи короткого замыкания.

2.2.10 _

выключатель нагрузки-разъединитель (switch-disconnector): выключатель нагрузки, который в отключенном положении удовлетворяет требованиям по изоляции, нормированным для разъединителя.

ПЕС 60050-441)

2.2.11_

автоматический выключатель (circuit-breaker): Контактное коммутационное устройство, способное включать, проводить и отключать электрические токи при нормальных условиях электрической цепи, а также включать, проводить втечение установленного времени и отключать электрические токи при определенных анормальных условиях электрической цепи, таких как короткое замыкание.

ПЕС 60050-441)

2.2.12_

контактор (контактный) [contactor (mechanical)]: Контактное коммутационное устройство, имеющее только одно положение покоя, приводимое в действие не вручную, способное включать, проводить и отключать электрические токи в нормальных условиях электрической цепи, включающих условия рабочей перегрузки.

ПЕС 60050-441)

Примечание — Контакторы могут различаться в зависимости от способа, которым обеспечивается усилив для включения главных контактов.

2.2.13 полупроводниковый контактор [semiconductor contactor (solid-state contactor)]: Коммутационное устройство, выполняющее функции контактора посредством использования полупроводникового коммутационного аппарата.

Примечание — Полупроводниковый контактор может также содержать контактные коммутационные аппараты.

2.2.14 _

контакторное реле (contactor relay): Контактор, используемый е качестве выключателя управления.

ПЕС 60050-441)

2.2.15 _

пускатель (starter): Комбинация всех средств коммутации, необходимых для запуска и остановки электродвигателя, в сочетании с надлежащей защитой от перегрузок.

ПЕС 60050-441)

Примечание — Пускатели могут различаться в зависимости от метода, посредством хогорого обеспечивают усилие для замыкания главных контактов.

2.2.16 аппарат для цепи управления (control circuit device): Электрическое устройство, предназначенное для управления, сигнализации, блокировки и т. л. в системах аппаратуры распределения и управления.

Примечание — В состав аппаратов для цепей управления могут входить связанные с ними устройства, рассматриваемые в других стандартах, типа контрольно-измерительных приборов, потенциометров, реле, если они используются для установленных целей.

2.2.17 _

выключатель управления (для цепей управления и вспомогательных цепей) [control switch (for control and auxiliary circuits)]: Контактное коммутационное устройство, которое предназначено для цепей управления коммутационной аппаратурой или аппаратурой управления, в том числе для сигнализации. электрической блокировки и т. д.

[IEC 60050-441)

Примечание — Выключатель управления состоит из одного или нескольких контактных элементов с общей системой приведения в действие.

2.2.16_

автоматический выключатель управления (pilot switch): Выключатель управления не ручного управления, приводимый в действие установленными значениями воздействующей величины.

ПЕС 60050-441)

Примечание — Воздействующей величиной может быть давление, температура, скорость, уровень жидкости, промежуток времени и т. д.

2.2.19 _

кнопочный выключатель (push-button): Выключатель управления, имеющий орган управления, предназначенный для приведения в действие усилием части человеческого тела, обычно пальцем или ладонью руки, и имеющий накопленную энергию (пружины) для возврата в исходное положение.

[IEC 60050-441)

2.2.20 клеммная колодка (terminal block): Изолирующая часть, служащая носителем для одной или нескольких изолированных друг от друга групп выводов и предназначенная для крепления на опоре.

2.2.21 устройство для защиты от коротких замыканий (УЗКЗ) [short-circuit protective device (SCPO)): Устройство, предназначенное для защиты цепи или частей цепи от токов короткого замыкания путем их отключения.

2.2.22 _

импульсный разрядник (surge arrester): Устройство, предназначенное для защиты электрической аппаратуры от высоких переходных напряжении и ограничения длительности, а часто и амплитуды последующего тока.

ПЕС 60050-604)

2.2.23 индивидуальная оболочка (individual enclosure): Оболочка, предназначенная и рассчитанная для размещения только одного аппарата.

2.3 Части коммутационных аппаратов 2.3.1

полюс коммутационного устройства (pole of a switching device): Часть коммутационного устройства, связанная исключительно с одним электрически отделенным проводящим путем его главной цепи, исключая те части, которые обеспечивают средства для монтажа и оперирования всеми полюсами совместно.

рЕС 60050-441)

Примечание — Коммутационное устройство называют однополюсным коммутационным устройством, если оно имеет только один полюс. Если оно имеет больше полюсов, его можно назвать многополюсным (двух-попоскым. трехполюсным и т. д.) коммутационным устройством в тех случаях, когда полюсы соединены или могут быть соединены таким способом, что оперируют вместе.

2.3.2

главная цепь (коммутационного устройства) [main circuit (of a switching device)]: Все токопроводящие части коммутационного устройства, входящие в цепь, которую аппарат предназначен замыкать или размыкать.

[IEC 60050-441)

2.3.3

цепь управления (коммутационного устройства) [control circuit (of a switching device)]: Все проводящие части (кроме входящих в главную цепь) коммутационного устройства, которые входят в электрическую цепь, используемую для замыкания или размыкания или обоих оперирований устройства.

рЕС 60050-441)

2.3.4

вспомогательная цепь (коммутационного устройства) [auxiliary circuit (of a switching device)]: 8ce проводящие части коммутационного устройства, которые предназначены для включения в иную электрическую цепь, чем главная цепь и цепь управления коммутационного устройства.

рЕС 60050-441)

Примечание — Некоторые вспомогательные цепи выполняют дополнительные функции, такие как сигнализация, блокировка и т. д.. а также они могут быть частью цепи управления другого коммутациотого устройства.

2.3.5

контакт (контактного коммутационного устройства) [contact (of a mechanical switching device)]: Проводящие части, предназначенные устанавливать непрерывность электрической цепи, когда они ее касаются, и которые в результате их взаимного движения во время оперирования размыкают или замыкают электрическую цепь или в случае шарнирных или скользящих контактов поддерживают непрерывность электрической цепи.

рЕС 60050-441]

2.3.6

контакт-деталь (contact piece): Одна из токопроводящих частей, образующих контакт.

(IEC 60050-441]

2.3.7

главный контакт (main contact): Контакт, входящий в главную цепь контактного коммутационного устройства, предназначенный проводить в замкнутом положении электрический ток главной цепи.

[IEC 60050-441)

2.3.8

дугогасительный контакт (arcing contact): Контакт, рассчитанный на образование на нем дуги.

[IEC 60050-441]

Примечание — Дуговой контакт может использоваться как главный контакт. Он может быть отдельным контактом. выполненным так. что он размыкается после и замыкается раньше другого контакта, который он предназначен защищать от повреждения.

2.3.9

контакт управления (control contact): Контакт, входящий в цепь управления контактного коммутационного устройства и механически приводимый в действие этим устройством.

рЕС 60050-441)

2.3.10

вспомогательный контакт (auxiliary contact): Контакт, входящий во вспомогательную цепь и механически приводимый в действие коммутационным устройством.

рЕС 60050-441)

2.3.11

блок-контакт (контактного коммутационного устройства) [auxiliary switch (of a mechanical switching device)): выключатель, содержащий один или несколько контактов управления и/или вспомогательных контактов, механически приводимых в действие коммутационным устройством.

рЕС 60050-441)

2.3.12

контакт «а», замыкающий контакт («а» contact, make contact): Контакт управления или вспомогательный контакт, который замкнут, когда главные контакты контактного коммутационного устройства замкнуты, и разомкнут, когда они разомкнуты.

рЕС 60050-441)

2.3.13

контакт «Ь>, размыкающий контакт («Ь» contact, break contact): Контакт управления или вспомогательный контакт, который разомкнут, когда главные контакты контактного коммутационного устройства замкнуты, и замкнут, когда они разомкнуты.

рЕС 60050-441)

2.3.14

реле (электрическое) [relay (electrical)): Аппарат, предназначенный для создания резких заданных изменений в одной или нескольких электрических выходных цепях, когда выполняются определенные условия е электрических входных цепях, управляющих этим аппаратом.

рЕС 60050-446)

2.3.15

расцепитель (контактного коммутационного устройства) [release (of a mechanical switching device)): Устройство, механически присоединенное к контактному коммутационному устройству, которое освобождает удерживающее приспособление и допускает размыкание или замыкание коммутационного устройства.

[IEC 60050-441)

Примечание — Возможны расцепители мгновенного действия, с задержкой времени и т. п. Разные типы расцепителей приведены в 2.4.24—2.4.35.

2.3.16 система управления (контактным коммутационным аппаратом) [actuating system (of а mechanical switching device)]: Все устройства оперирования контактным коммутационным аппаратом, передающие усилие управления контакт-деталям.

Примечание — Устройства оперирования системы управления могут быть механическими, электромагнитными. гидравлическими, пневматическими, термическими и т. д.

2.3.17

орган управления (actuator): Часть приводного механизма, к которой прикладывают внешнее усилие воздействия.

рЕС 60050-441)

Примечание — Орган управления может принимать форму рукоятки, шарообразной ручки, кнопки, ролика, поршня и т. д.

2.3.18 _

индикатор положения (position indicating device): Часть контактного коммутационного устройства. которая показывает, находится ли оно в разомкнутом, замкнутом или. где применимо, заземленном положении.

[IEC 60050-441)

2.3.19 сигнальная лампочка (indicator tight): Световой сигнал, передающий информацию тем. что загорается или гаснет.

2.3.20

устройство против повторного включения (anti-pumping device): Устройство, которое предотвращает повторное включение после замыкания — размыкания до тех лор. пока остается команда на замыкание.

ПЕС 60050-441)

2.3.21 _

устройство блокировки (interlocking device): Устройство, которое обусловливает возможность оперирования коммутационного устройства положением или срабатыванием одного или нескольких других элементов оборудования.

ПЕС 60050-441)

2.3.22 _

соединительное устройство (connecting device): Устройство для электрического присоединения одного или нескольких проводников, содержащее один или несколько выводов на одном основании или выводов, составляющих единое целое с оборудованием.

[IEC 60999-1 (подраздел 3.3)]

2.3.23 _

вывод (terminal): Токопроводящая часть одного полюса аппарата, предназначенная для электрического соединения с внешними цепями, состоящая из одного или нескольких зажимов и при необходимости изоляции.

[IEC 60999-1 (подраздел 3.2))

2.3.24 резьбовый вывод (screw-type terminal): Вывод, предназначенный для присоединения и отсоединения проводников или взаимного соединения двух или нескольких проводников с выполнением соединения прямо или косвенно с помощью винтов или гаек любого типа.

Примечание — Примеры резьбовых выводов приведены в приложении О.

2.3.25 безрезьбовый вывод (screwiess-type terminal): Вывод, предназначенный для присоединения и отсоединения проводников или взаимного соединения двух или нескольких проводников с выполнением сиидинвния прями или косвенно с помощью пружин, клиньев, эксцентриков, конусов и т. п.

Примечание — Примеры безрезьбовых выводов приведены в приложении D.

2.3.25.1 _

универсальный вывод (universal tenminai): Вывод, предназначенный для присоединения и отсоединения проводников всех типов (жестких и гибких).

ПЕС 60998-2-2 (пункт 3.101.1))

2.3.25.2 _

неуниверсальный вывод (non-universal terminal): Вывод, предназначенный для присоединения и отсоединения проводников определенного типа, например только одножильных или только жестких (одножильных и скрученных) проводников.

ПЕС 60998-2-2 (пункт 3.101.2))

2.3.25.3

самозажимной вывод (push-wire terminal): Неуниверсальный вывод, соединение в котором осуществляется введением жестких (одножильных или скрученных) проводников.

ПЕС 60998-2-2 (пункт 3.101.3»

2.3.26 _

зажим (clamping unit): Часть или части вывода, необходимые для механического крепления и электрического присоединения одного или нескольких проводников, включая части, гарантирующие необходимое контактное давление.

ПЕС 60999-1 (подраздел 3.1)]

2.3.26.1 универсальный зажим (universal clamping unit): Зажим для присоединения и отсоединения всех типов проводников.

2.3.26.2 неуниверсальный зажим (non-universal clamping unit): Зажим для присоединения и отсоединения проводников определенного типа [например, самозажимной зажим только для одножильных проводников или самозажимной зажим только для жестких (одножильных или скрученных) проводников).

Примечание — Присоединение в самозажимном зажиме выполняется простым введением жестких проводников (см. 7.1.8.1).

2.3.27 неподготовленный проводник (unprepared conductor): Проводник, отрезанный и с удаленной изоляцией, для вставки в вывод.

Примечание — К неподготовленным относят проводники, форма которых изменена для вставки 8 вывод или жилы которых скручены для упрочнения конца.

2.3.28 подготовленный проводник (prepared conductor): Проводник, жилы которого спаяны или конец которого снабжен кабельным наконечником, ушком и т. п.

2.3.29 _

однопроволочный проводник (solid conductor): Проводник, состоящий из одной проволоки.

Примечание 1 — Однолроволочный проводник может быть круглым или профильным.

Примечание 2 — Однолроволочный проводник определяют по классу 1 согласно IEC 60228 или IEC 60344 либо эквивалентно по AWG/kcmil.

ПЕС 60050-461)

2.3.30 _

многопроволочный проводник (stranded conductor): Проводник, состоящий из нескольких проволок. все или некоторые из которых намотаны в виде спирали.

Примечание — Многопроволочный проводник определяют по классу 2 согласно !ЕС 60228 или IEC 60344 либо эквивалентно по AWG/kcmil.

ПЕС 60050-151)

2.3.31 жесткий проводник (rigid conductor): Однопроволочный или многопроволочный проводник, провода которого имеют достаточно малый диаметр или так скомплектованы, что проводник не подходит для использования в гибком кабеле.

2.3.32 _

гибкий проводник (flexible conductor): Многопроволочный проводник, провода которого имеют достаточно малый диаметр или так скомплектованы, что проводник подходит для использования в гибком кабеле.

Примечание — Гибкий проводник определяют то классу 5 или классу 6 согласно IEC 60228 или IEC 60344 либо эквивалентно то AWG/kcmil.

ПЕС 60050-461]

2.3.33 контактная система с многократным разрывом (multiple tip contact system): Контактная система с более чем одним зазором на полюс между разомкнутыми концами контактов, которые могут размыкаться последовательно и/или параллельно.

2.3.34 минимальное поперечное сечение (minimum cross-section): Сечение наименьшего присоединяемого проводника, установленное изготовителем для данного вывода.

Примечание — Изготовитель может установить нескогъко минимальных поперечных сечений в зависимости от типа проводника, например жестхого, скрученного, гибкого, с металлическим ободком или без.

2.3.35 максимальное поперечное сечение (maximum cross-section): Сечение наибольшего присоединяемого проводника, установленное изготовителем для данного вывода.

Примечания

1 Изготовитель может установить несколько максимальных поперечных сечений в зависимости от типа проводника. например жесткого, скрученного, гибкого, с металлическим ободком или без.

2 Термин «номинальное поперечное сечение», применяемый е IEC 60947-7-1 и 1ЕС 60999-2. и термин «номинальная способность к присоединению» зажима считают эквивалентны»! с точки зрения определенных тепловых. механических и электрических требований, устанавливаемых изготовителем, а также в стандартах на аппараты конкретного вида.

2.3.36 электромагнит с электронным управлением (electronically controlled electromagnet): Электромагнит, катушка которого управляется цепью, содержащей активные электронные элементы.

2.4 Функционирование коммутационных аппаратов 2.4.1

оперирование (контактного коммутационного устройства) [operation (of a mechanical switching device)): Перемещение подвижного контакта (контактов) из одного положения в другое.

Примечания

1 Для автоматического выключателя это может быть замыканием или размыканием

2 Если необходимо различие, оперирование в электрическом смысле, например включение или отключение. упоминают как коммутационное оперирование, а оперирование в механическом смысле, например замыкание или размыкание, упоминают как мехзничесхое оперирование.

рЕС 60050-441)

2.4.2

цикл оперирования (контактного коммутационного устройства) [operating cycle (of a mechanical switching device)): Последовательность оперирований иэ одного положения в другое и обратно к первому положению через все другие положения при их наличии.

рЕС 60050-441)

2.4.3

последовательность оперирования (контактного коммутационного устройства) (operating sequence [of a mechanical switching device)): Последовательность определенных оперирований с установленными интервалами времени.

рЕС 60050-441)

2.4.4

ручное управление (manual control): Управление оперированием посредством вмешательства человека.

рЕС 60050-441)

2.4.5

автоматическое управление (automatic control): Управление оперированием без вмешательства человека в ответ на возникновение предопределенных условий.

рЕС 60050-441)

2.4.6

местное управление (local control): Управление оперированием иэ точки, расположенной на управляемом коммутационном устройстве или прилегающей к нему.

рЕС 60050-441]

2.4.7

дистанционное управление (remote control): Управление оперированием из точки, удаленной от управляемого коммутационного устройства.

рЕС 60050-441)

2.4.8

замыкание (контактного коммутационного устройства) [closing operation (of a mechanical switching device)): Оперирование, посредством которого устройство переводят из разомкнутого положения в замкнутое положение.

[IEC 60050-441)

2.4.9

размыкание (контактного коммутационного устройства) [opening operation (of a mechanical switching device)): Оперирование, посредством которого устройство переводят из замкнутого положения в разомкнутое положение.

[IEC 60050-441)

2.4.10

полное размыкание (контактного коммутационного устройства) [positive opening operation (of а mechanical switching device)]: Размыкание, которое в соответствии с установленными требованиями обеспечивает разомкнутое положение всех главных контактов, когда орган управления находится в положении, соответствующем разомкнутому положению устройства.

ПЕС 60050-441)

2.4.11

полностью проведенное оперирование (positively driven operation): Оперирование, которое в соответствии с установленными требованиями предусмотрено для обеспечения того, чтобы вспомогательные контакты контактного коммутационного устройства находились в положениях, соответствующих разомкнутому или замкнутому положению главных контактов.

ПЕС 60050-441)

2.4.12

зависимое ручное оперирование (контактного коммутационного устройства) (dependent manual operation (of a mechanical switching device)]: Оперирование только посредством энергии, создаваемой руками человека, так что скорость и сила оперирования зависят от действий оператора.

[IEC 60050-441]

2.4.13

зависимое двигательное оперирование (контактного коммутационного устройства) [dependent power operation (of a mechanical switching device)]: Оперирование посредством иной энергии, чем создаваемая руками человека, когда завершение оперирования зависит от непрерывности питания (соленоидов, электрических и пневматических двигателей и т. д.).

ПЕС 60050-441]

2.4.14

оперирование за счет запасенной энергии (контактного коммутационного устройства) [stored energy operation (of a mechanical switching device)]: Оперирование посредством энергии, запасенной в самом механизме до завершения оперирования и достаточной для ее завершения при предопределенных условиях.

[IEC 60050-441)

Примечание — Этот тип оперирования можно подразделить согласно:

• способу накопления энергии (пружина, вес и др.):

• происхождению энергии (создаваемая руками человека, электрическая и др.):

• способу высвобождения энергии (ручной, электрический и др.).

2.4.15

независимое ручное оперирование (контактного коммутационного устройства) [independent manual operation (of a mechanical switching device)]: Оперирование за счет запасенной энергии, создаваемой руками человека, накапливаемой и высвобождаемой в одном непрерывном действии так, что скорость и сила оперирования не зависят от действий оператора.

ПЕС 60050-441]

2.4.16 двигательное управление (контактным коммутационным устройством) при наличии привода независимого действия (independent power operation (of a mechanical switching device)): Управление с помощью поступления накопленной энергии из внешнего источника и ее высвобождения в процессе непрерывного оперирования, так что скорость и усилие срабатывания не зависят от действии оператора.

2.4.17 _

усилие воздействия (actuating force): Усилие, приложенное к органу управления, необходимое для выполнения предусмотренного оперирования.

[IEC 60050-441]

2.4.18 _

возвращающее усилие (restoring force): Усилие, обеспечивающее возвращение органа управления или контактного элемента в его исходное положение.

(IEC 60050-441)

2.4.19 _

ход (контактного коммутационного устройства или его части) [travel (of a mechanical switching device or a part thereof)]: Смещение (перемещение или вращение) точки подвижного элемента.

Примечание — Можно различать недоход. переход и т. д.

[1ЕС 60050-441)

2.4.20

замкнутое положение (контактного коммутационного устройства) (closed position [of a mechanical switching device)]: Положение, при котором обеспечена предопределенная непрерывность главной цепи устройства.

[IEC 60050-441)

2.4.21 разомкнутое положение (контактного коммутационного аппарата) [open position (of a mechanical switching device)]: Положение, при котором удовлетворяются требования к заданному выдерживаемому напряжению по изоляции между разомкнутыми контактами в главной цепи аппарата.

Примечание — Данное определение отличается от формулировки, содержащейся в IEC 60050-441. с учетом требований к электроизоляционным свойствам.

2.4.22 расцепление (операция) [tripping (operation)]: Размыкание контактного коммутационного аппарата, инициируемое реле или расцепителем.

2.4.23 контактное коммутационное устройство со свободным расцеплением (trip-free mechanical switching device): Контактный коммутационный аппарат, подвижные контакты которого возвращаются в разомкнутое положение и остаются в нем. когда операция размыкания (т. е. расцепления) начинается после начала операции замыкания, даже если сохраняется команда на замыкание.

Примечания

1 Для того чтобы обеспечить нужное отключение тока, который мог бы установиться, может потребоваться мгновенное достижение контактами замкнутого положения.

2 Формулировка, содержащаяся в IEC 60050-441, была дополнена словом «расцепление», так как управление размыканием контактного коммутационного аппарата со свободным расцеплением осуществляется автоматически.

2.4.24 реле или расцепитель мгновенного действия (instantaneous relay or release): Расцепитель. срабатывающий без преднамеренной выдержки времени.

2.4.25 максимальное реле или максимальный расцепитель тока (over-current relay or release): Расцепитель, допускающий отключение контактного коммутационного аппарата с выдержкой времени или без нее. когда ток в расцепителе превышает заданное значение.

Примечание — Это значение может зависеть от скорости нарастания тока.

2.4.26 максимальное реле или максимальный расцепитель тока с независимой выдержкой времени (definite time-delay over-current relay or release): Максимальный расцепитель тока, срабатывающий с определенной выдержкой времени, которая может регулироваться, но не зависит от значения сверхтока.

2.4.27 максимальное реле или максимальный расцепитель тока с обратно зависимой выдержкой времени (inverse time-delay over-current relay or release): Максимальный расцепитель тока, срабатывающий после выдержки времени, имеющий обратную зависимость от сверхтока.

Примечание — Такой расцвпигель мажет быть выполнен так. что выдержка времени приближается к определенному минимальному значению при больших значениях сверхтоков.

2.4.28 максимальное реле или максимальный расцепитель тока прямого действия (direct over-current relay or release): Максимальный расцепитель тока, приводимый в действие непосредственно током главной цепи контактного коммутационного аппарата.

2.4.29 максимальное реле или максимальный расцепитель тока косвенного действия (indirect over-current relay or release): Максимальный расцепитель тока, приводимый в действие током главной цепи контактного коммутационного аппарата через трансформатор тока или шунт.

2.4.30 реле перегрузки или расцепитель перегрузки (overload relay or release}: Максимальное реле или максимальный расцепитель тока, предназначенный для защиты от перегрузок.

2.4.31 тепловое реле или расцепитель перегрузки (thermal overload relay or release): Реле или расцепитель перегрузки с обратно зависимой выдержкой времени, срабатывание которого (в том числе выдержка времени) зависит от теплового действия тока, проходящего через это реле или расцепитель.

2.4.32 электромагнитное реле или расцепитель перегрузки (magnetic overload relay or release): Реле или расцепитель перегрузки, срабатывание которого зависит от усилия, создаваемого током главной цепи, возбуждающим катушку электромагнита.

Примечание — У таких репе или расцепителей выдержка времени обычно обратно пропорциональна току.

2.4.33 _

независимый расцепитель (shunt release): Расцепитель, возбуждаемый источником напряжения.

[1ЕС 60050-441)

Примечание — Источник напряжения может быть независимым от напряжения главной цепи.

2.4.34 минимальное реле или минимальный расцепитель напряжения (under-voltage relay or release): Реле или расцепитель, допускающий размыкание или замыкание контактного коммутационного аппарата с выдержкой времени или без нее. когда напряжение на выводах реле или расцепителя падает ниже заданного значения.

2.4.35 реле или расцепитель обратного тока (только для постоянного тока) [reverse current relay or release (d.c. only)): Реле или расцепитель, допускающий размыкание контактного коммутационного аппарата с выдержкой времени или без нее. если ток проходит е обратном направлении и превышает заданное значение.

2.4.36 ток срабатывания (максимального реле или расцепителя тока) [operating current (of an overcurrent relay or release)]: Значение тока, при котором и выше которого срабатывает реле или расцепитель.

2.4.37 ток уставки (максимального реле или максимального расцепителя тока или реле перегрузки или расцепителя перегрузки) [current-setting (of an overcurrent or overload relay or release)]: Значение тока в главной цепи, к которому отнесены характеристики репе или расцепителя и на которые итрегулиривано реле или расцвпигель.

Примечание — Реле или расцепитель могут характеризоваться нвскогъкими токовыми уставками, устанавливаемыми с помощью регулятора со шкалой, сменных нагревателей и т. п.

2.4.38 диапазон токовых уставок (максимального реле или максимального расцепителя тока или реле перегрузки или расцепителя перегрузки) [current-setting range (of an overcurrent or overload relay or release)): Диапазон между минимальным и максимальным значениями, е котором можно регулировать уставку тока реле или расцепителя.

2.5 Параметры и характеристики

2.5.1_

номинальное значение (nominal value): Значение величины, используемое для обозначения и идентификации компонента, устройства, оборудования или системы.

рЕС 60050-151)

Примечание — Номинальное значение обычно является округленным значением.

2.5.2

предельное значение (limiting value): Наибольшее или наименьшее допустимое значение величины. указанное е технической характеристике компонента, устройства, оборудования или системы.

[IEC 60050-151]

2.5.3

расчетное значение (rated value): Значение величины, используемое в целях детализации, устанавливаемой для заданного диапазона условий оперирования компонента, устройства, оборудования или системы.

(IEC 60050-1511

2.5.4

паспортные данные (rating): Ряд расчетных значений и условий оперирования.

(1ЕС 60050-151)

2.5.5

ожидаемый ток (цепи и по отношению к коммутационному устройству или плавкому предохранителю) (prospective current (of a circuit and with respect to a switching device or a fuse)]: Электрический ток. который протекал бы в электрической цепи, если бы каждый полюс коммутационного устройства или плавкого предохранителя был бы заменен проводником пренебрежимо малого полного сопротивления.

ПЕС 60050-441)

Примечание — Метод, используемый для оценки и представления ожидаемого тока, определяется 8 соответствующих документах.

2.5.6

ожидаемый пиковый ток (prospective peak current): Пиковое значение ожидаемого тока во время переходного процесса после его возникновения.

ПЕС 60050-441]

Примечание — Определение подразумевает, что электрический ток включен идеальным коммутационным устройством, то есть с мгновенным переходом от бесконечного к нулевому полному сопротивлению. Для электрических цепей, в которых электрический ток может протекать по нескольким различным путями, например многофазных целей, считается, что электрический ток включается одновременно во всех полюсах, даже если рассматривают электрический ток только в одном полюсе.

2.5.7

симметричный ожидаемый ток (цепи переменного тока) [prospective symmetrical current (of an a.c. circuit)]: Ожидаемый ток. возникающий e такой момент, после которого отсутствует переходный процесс.

[IEC 60050-441)

Примечания

1 Для многофазных цепей условие отсутствия переходного процесса может быть выполнено только для электрического тока в одном полюсе.

2 Симметричный ожидаемый ток выражают его действующим значением.

2.5.8

максимальный ожидаемый пиковый ток (цепи переменного тока) [maximum prospective peak current (of an a.c. circuit)]: Ожидаемый пикоеый ток, когда возникновение электрического тока происходит в момент, который приводит к наибольшему возможному значению.

Примечание — Для многополюсного устройства в многофазной цепи максимальный ожидаемый пиковый ток относится только к одному полюсу.

[IEC 60050-441]

2.5.9 _

ожидаемый ток включения (для полюса коммутационного устройства) [prospective making current (for a poie of a switching device)]: Ожидаемый ток. возникающий при нормированных условиях.

Примечание — Нормированные условия могут иметь отношение к способу, вызывающему возникновение электрического тока, например посредством идеального коммугациожопо устройства, или к моменту возникновения, например приводящему к максимальному ожидаемому пиковому току в цепи переменного тока или к наивысшей скорости нарастания. Подробное изложение этих условий приведено в соответствующих документах.

[IEC 60050-441]

2.5.10 _

ожидаемый ток отключения (для полюса коммутационного устройства или плавкого предохранителя) [prospective breaking current (for a poie of a switching device or a fuse)]: Ожидаемый ток. оцениваемый в момент начала процесса отключения.

ПЕС 60050-441]

Примечание — Подробные описания, имеющие отношение к началу процесса отключения, приведены в соответствующих документах. Для контактных коммутационных устройств или плавких предохранителей он обычно определен как момент возникновения электрической дуги во время процесса отключения.

2.5.11

ток отключения (коммутационного устройства или плавкого предохранителя) [breaking current (of a switching device or a fuse)]: Электрический ток в полюсе коммутационного устройства или в плавком предохранителе в момент возникновения электрической дуги во время процесса отключения.

[IEC 60050-441]

Примечание — Для переменного тока это симметричное действующее значение периодической составляющей.

2.5.12

отключающая способность (коммутационного устройства или плавкого предохранителя) [breaking capacity (of a switching device or a fuse)]: Значение ожидаемого тока, который коммутационное устройство или плавкий предохранитель способен отключить при установленном напряжении и предписанных условиях использования и поведения.

ПЕС 60050-441]

Примечания

1 Напряжение устанавливается и условия предписываются 8 стандарте на аппарат конкретного вида

2 Для переменного тока эго симметричное действующее значение периодической составляющей.

3 Определение наибольшей отключающей способности см. е 2.5.14.

2.5.13

включающая способность (коммутационного устройства) [making capacity (of a switching device)]: Значение ожидаемого тока включения, который коммутационное устройство способно включить при установленном напряжении и предписанных условиях использования и поведения.

ПЕС 60050-441]

Примечания

1 Напряжение устанавливается и условия предписываются в стандарте на аппарат конкретного вида.

2 Определение наибольшей включающей способности см. в 2.5.15.

2.5.14

отключающая способность при коротком замыкании (short-circuit breaking capacity): Отключающая способность, для которой предписанные условия включают в себя короткое замыкание на выводах коммутационного устройства.

ПЕС 60050-441]

2.5.15 _

включающая способность при коротком замыкании (short-circuit making capacity): Включающая способность, для которой предписанные условия включают е себя короткое замыкание на выводах коммутационного устройства.

[IEC 60050-441)

2.5.16 критический ток нагрузки (critical load current): Значение тока отключения в пределах диапазона условий эксплуатации, при котором время дуги заметно увеличивается.

2.5.17 критический ток короткого замыкания (critical short-circuit current): Значение тока отключения ниже номинальной наибольшей отключающей способности, при котором энергия дуги значительно выше, чем при номинальной наибольшей отключающей способности.

2.5.18

ft, интеграл Джоуля (ft. Joule integral): Интеграл квадрата электрического тока по заданному

интервалу времени:

l2t = J i2dt.

ПЕС 60050-441)

2.5.19

ток отсечки, пропускаемый ток (cut-off current, let-through current): Максимальное мгновенное значение электрического тока, достигнутое во время отключения коммутационного устройства или плавкого предохранителя.

ПЕС 60050-441)

Примечание — Это понятие имеет особое значение, когда коммутационное устройство или плавкий предохранитель оперируют таким образом, что не достигается ожидаемый пиковый ток цепи.

2.5.20 _

время — токовая характеристика (time-current characteristic): Кривая, задающая время, например. преддуговое время или время срабатывания, как функцию ожидаемого тока при установленных условиях оперирования.

[IEC 60050-441)_

2.5.21 _

характеристика тока отсечки, характеристика пропускаемого тока [cut-off (current) characteristic. let-through (current) characteristic): Кривая, задающая ток отсечки как функцию ожидаемого тока при установленных условиях оперирования.

ПЕС 60050-441)

Примечание — В случав переменного тока значения тока отсечки являются максимальными значениями, которые могут быть достигнуты при любой степени асимметрии тока. В случав постоянного тока значения тока отсечки являются максимальными значениями, достигаемыми в зависимости от нормированной постоянной времени.

2.5.22 координация по сверхтоку устройств для защиты от сверхтоков (over-current protective co-ordination of over-current protective devices): Координация двух или нескольких устройств, соединенных последовательно, для обеспечения селективности при сверхтоках и/или резервной защиты.

2.5.23 селективность по сверхтокам (over-current selectivity): Координация рабочих характеристик двух или нескольких устройств для защиты от сверхтоков с таким расчетом, чтобы в случае возникновения сверхтоков в пределах указанного диапазона срабатывало только устройство, предназначенное для оперирования в данном диапазоне, а прочие не срабатывали.

Примечание — Различают последовательную селективность, когда через различные устройства для защиты от сверхтоков проходит практически один и тот же саерхток, и параппвгъную селективность, когда через тождественные защитные устройства проходят разные доли сеерхтока.

2.5.24 резервная защита (back-up protection): Координация по сверхтокам двух устройств для защиты от сверхтока, соединенных последовательно, когда защитное устройство, расположенное, как правило, но не обязательно, на входной стороне, осуществляет защиту от сверхтока с помощью или без помощи второго защитного устройства и предохраняет последнее от чрезмерной нагрузки.

2.5.25 _

ток координации (take-over current): Координата тока в точке пересечения между еремятоковы-

ми характеристиками двух устройств защиты от сверхтока.

рЕС 60050-441]_

2.5.26 кратковременная выдержка (short-time delay): Любая преднамеренная задержка срабатывания в диапазоне предепьных значений номинального кратковременно допустимого тока.

2.5.27 _

кратковременно выдерживаемый ток (short-time withstand current): Электрический ток. который электрическая цепь или коммутационное устройство, находящееся в замкнутом положении, может проводить в течение нормированного короткого промежутка времени при предписанных условиях использования и поведения.

рЕС 60050-441}_

2.5.26_

пиковый выдерживаемый ток (peak withstand current): Значение пикового тока, который электрическая цепь или коммутационное устройство, находящееся в замкнутом положении, может проводить при предписанных условиях использования и поведения.

рЕС 60050-441}_

2.5.29 условный ток короткого замыкания (в цепи или коммутационном устройстве) (conditional short-circuit current (of a circuit or a switching device)]: Ожидаемый ток. который электрическая цепь или коммутационное устройство, защищенные заданным устройством для защиты от коротких замыканий. способны удовлетворительно выдерживать в течение всего времени срабатывания защитного устройства в указанных условиях эксплуатации и поведения.

Примечания

1 В настоящем стандарте устройством для защиты от коротких замыканий служит, как правило, автоматический выключатель или плавкий предохранитель.

2 Данное определение отличается от формулировки, приведенной в IEC 60050-441. расширением определения токоограничивающего аппарата до устройства для защиты от коротких замыканий, функция которого не сводится только к токоограничвнию.

2.5.30 условный ток нерасцеплекия (максимального реле или максимального расцепителя тока) (conventional non-tripping current (of an over-current relay or release)]: Установленное значение тока, который реле или расцепитель способен проводить, не срабатывая, в течение заданного (условного) времени.

2.5.31 условный ток расцепления (максимального реле или максимального расцепителя тока) [conventional tripping current (of an over-current relay or release)]: Установленное значение тока, вызывающего срабатывание реле или расцепителя в течение заданного (условного) времени.

2.5.32 _

приложенное напряжение (для коммутационного устройства) [applied voltage (for a switching device)]: Напряжение, которое имеется между выводами полюса коммутационного устройства перед включением илок1прич(тки<м тока.

[1ЕС 60050-441]

Примечание — Данное определение действительно для однополюсного аппарата. Для многополюсного аппарата это межфазное напряжение на входных выводах аппарата.

2.5.33 _

восстанавливающееся напряжение (recovery voltage): Напряжение, которое появляется на выводах полюса коммутационного устройства или плавкого предохранителя после отключения элек-триччск<лл> Тока.

[IEC 60050-441}

Примечания

1 Это напряжение можно рассматривать для двух последовательных промежутков времени. Во время первого промежутка времени существует переходное напряжение, а во время последующего второго промежутка времени существует только установившееся восстанавливающееся напряжение промышленной частоты.

2 Определение действительно для однополюсного аппарата. Для многополюсного аппарата это межфазное напряжение на входных выводах аппарата.

2.5.34

переходное восстанавливающееся напряжение [transient recovery voltage. T.R.V. (abbrevi-а!юп)]: Восстанавливающееся напряжение е течение промежутка времени, когда оно имеет существенный переходный характер.

рЕС 60050-441)

Примечание — Переходное восстанавливающееся напряжение может быть колебательным, или неко-лебагегъным. или их комбинацией в соответствии с характеристиками электрической цепи и коммутационного устройства. Оно включает в себя смешение напряжения нейтрали многофазной цепи.

2.5.35

восстанавливающееся напряжение промышленной частоты (power frequency recovery voltage): Восстанавливающееся напряжение после затухания переходного процесса напряжения.

рЕС 60050-441)

2.5.36

установившееся восстанавливающееся напряжение постоянного тока (d.c. steady-state recovery voltage): Восстанавливающееся напряжение в электрической цели постоянного тока после затухания переходного процесса напряжения, выраженное посредством среднего значения, если присутствует пульсация.

(IEC 60050-441)

2.5.37

ожидаемое переходное восстанавливающееся напряжение (цепи) [prospective transient recovery voltage (of a circuit)): Переходное восстанавливающееся напряжение вслед за отключением ожидаемого симметричного тока идеальным коммутационным устройством.

рЕС 60050-441)

Примечание — Это определение предполагает, что коммутационное устройство или плавкий предохранитель. для которого определяется ожидаемое переходное восстанавливающееся напряжение, заменен идеальным коммутационным устройством, имеющим мгновенный переход от нулевого до бесконечного полного сопротивления в момент прохождения электрического тока через нуль. т. е. при «естественном» нуле. Для электрических цепей, в которых электрический ток может протекать несколькими различными путями, например для многофазной цепи, определение, кроме того, предполагает, что отключение электрического тока идеальным коммутационным устройством происходит только в рассматриваемом полюсе.

2.5.36

пиковое напряжение дуги (контактного коммутационного устройства) [peak arc voltage (of a mechanical switching device)]: Максимальное мгновенное значение напряжения, которое при предписанных условиях появляется на выводах полюса коммутационного устройства в течение времени дуги.

[IEC 60050-441]

2.5.39

время размыкания (контактного коммутационного устройства) [opening time (of a mechanical switching device)]: Интервал времени между заданным моментом инициирования размыкания и моментом. когда дуговые контакты разделились во всех полюсах.

[1ЕС 60050-441)

Примечание — Момент инициирования размыкания, т. е. применения команды размыкания (например. возбуждение расцепителя и т. д.), задается е соответствующих документах.

2.5.40

время дуги (полюса или плавкого предохранителя) [arcing time (of a pole or a fuse)]: Интервал времени между моментом возникновения электрической дуги е полюсе или в плавком предохранителе и моментом завершения гашения электрической дуги е этом полюсе или е этом плавком предохранителе.

[1ЕС 60050-441)

2.5.41 _

время дуги (многополюсного коммутационного устройства) [arcing time (of a multipole switching device)]: Интервал времени между моментом первого возникновения электрической дуги и моментом завершения гашения электрических дуг во всех полюсах.

[IEC 60050-441]

2.5.42

время отключения (break-time): Интервал времени между началом времени размыкания контактного коммутационного устройства (или преддугового времени плавкого предохранителя) и концом времени дуги.

[IEC 60050-441}

2.5.43

время включения (make-time): Интервал времени между моментом инициирования замыкания и моментом, когда электрический ток начинает протекать в главной цепи.

ПЕС 60050-441]

2.5.44 _

время замыкания (closing time): Интервал времени между моментом инициирования замыкания и моментом, когда контакты соприкасаются во всех полюсах.

ПЕС 60050-441]

2.5.45

время включения-отключения (make-break time): Интервал времени между моментом, когда электрический ток начинает протекать в полюсе, и моментом завершения гашения электрических дуг во всех полюсах. При этом расцепитель размыкания возбуждается в момент, когда электрический ток начинает протекать в главной цепи.

[IEC 60050-441}

2.5.46

воздушный зазор (clearance): Кратчайшее расстояние между двумя токопроводящими частями.

ПЕС 60050-441]

2.5.47

зазор между полюсами (clearance between poles): Зазор между любыми проводящими частями смежных полюсов.

[IEC 60050-441]

2.5.48

зазор относительно земли (clearance to earth): Зазор между любыми проводящими частями и любыми частями, которые заземлены или предназначены дпя заземления.

[IEC 60050-441}

2.5.49 _

зазор между разомкнутыми контактами (clearance between open contacts): Суммарный зазор между контактами или любыми проводящими частями, присоединенными к ним. полюса контактного коммутационного устройства в разомкнутом положении.

[IEC 60050-441]

2.5.50 _

изолирующий промежуток (полюса контактного коммутационного устройства) [isolating distance (of a pole of a mechanical switching device)]: Зазор между разомкнутыми контактами, который соответствует требованиям безопасности, установленным для разъединителей.

ПЕС 60050-441]

2.5.51 расстояние утечки (creepage distance): Кратчайшее расстояние по поверхности изоляционного материалы между двумя токопроводящими частями.

Примечание — Стык между двумя частями из изоляционного материала считают частью поверхности.

2.5.52 эксплуатационное напряжение (working voltage): Наибольшее действующее значение напряжения переменного или наибольшее значение напряжения постоянного тока по конкретной изоляции. которое может возникать при номинальном напряжении питания.

Примечания

1 Переходные явления не учитывают.

2 С учетом условий разомкнутой цели и нормальных рабочих условий.

2.5.53 временное перенапряжение (temporary overvoltage): Перенапряжение относительно большой длительности (несколько секунд), установившееся в данном месте между фазой и землей, между фазой и нейтралью или между фазами.

2.5.54 переходные перенапряжения (transient overvoltages): К переходным перенапряжениям относят:

2.5.54.1 коммутационное перенапряжение (switching overvoltage): Переходное перенапряжение на конкретном участке системы, обусловленное конкретной операцией коммутирования или повреждением.

2.5.54.2 грозовое перенапряжение (lightning overvoltage): Переходное перенапряжение на конкретном участке системы, обусловленное конкретным грозовым разрядом (см. также IEC 60060 и IEC 60071-1).

2.5.54.3 функциональное перенапряжение (functional overvoltage): Намеренно созданное перенапряжение. необходимое для функционирования аппарата.

2.5.55 импульсное выдерживаемое напряжение (impulse withstand voltage): Наибольшее пиковое значение импульсного напряжения предписанной формы и полярности, не вызывающее пробоя в заданных условиях испытания.

2.5.56 выдерживаемое напряжение промышленной частоты (power-frequency withstand voltage): Действующее значение синусоидального напряжения промышленной частоты, не вызывающее пробоя в заданных условиях испытания.

2.5.57 загрязнение (pollution): Любое добавление инородных веществ, твердых, жидких или газообразных (ионизированных газов), которые могли бы уменьшить электрическую прочность изоляции или поверхностное удельное сопротивление.

2.5.58 степень загрязнения (окружающей среды) [pollution degree (of environmental conditions)): Условное число, основанное на количестве токопроводящей или гигроскопической пыли, ионизированных газов или солей и относительной влажности и частоте появления ее значений, обусловливающих гигроскопическую абсорбцию или конденсацию влаги, ведущую к снижению электрической прочности изоляции и/или поверхностного удельного сопротивления.

Примечания

1 Степень загрязнения, воздействию которого подвергается аппарат, может отличаться от степени загрязнения микросреды, в которой установлен этот аппарат, вследствие защиты, обеспечиваемой обопочсой. или внутреннего нагрева, препятствующего абсорбции или конденсации влаги.

2 Для целей настоящего стандарта рассматривают степень загрязнения микросреды.

2.5.59 микросреда (воздушного зазора или расстояния утечки) [micro-environment (of a clearance or creepage distance)): Условия окружающей среды вокруг рассматриваемого воздушного зазора или расстояния утечки.

Примечание — Эффективность изоляции определяется микросредой расстояния утечки или воздушного зазора, а не макросредой аппарата. Эта микросреда может быть лучше или хуже макросреды аппарата. К ней относятся факторы, влияющие на изоляцию: климатические и электромагнитные условия, образование загрязнения и т. п.

2.5.60 категория перенапряжения (в электрической цепи или электрической системе) [overvoltage category (of a circuit or within an electrical system)]: Условное число, зависящее от ограничения (или регулирования) значений ожидаемых переходных напряжений, возникающих в цепи (или электрической системе с различными номинальными напряжениями), и зависящее от способов воздействия на ПеренаПрЯЖиНИЯ.

Примечание — В электрической системе переход от одной категории перенапряжения к другой, более низкой, достигается средствами, совместимыми с требованиями к переходным участкам, например с помощью устройства для защиты от перенапряжений или последовательно-параллельного присоединения полного сопротивления. способного рассеять, поглотить или отклонить энергию соответствующего импугъсного тока с целью снижения переходного перенапряжения до желаемой меньшей категории перенапряжения.

2.5.61 координация изоляции (co-ordination of insulation): Соотношение изоляционных свойств электрического аппарата с ожидаемыми перенапряжениями и характеристиками устройств для защиты от перенапряжений и предполагаемой микросредой и способами защиты от загрязнений.

2.5.62 однородное поле [homogeneous (uniform) field]: Электрическое поле с практически постоянным градиентом напряжения между электродами, как между двумя сферами, радиус каждой из которых больше расстояния между ними.

2.5.63 неоднородное поле (non-homogeneous (non-uniform) field]: Электрическое поле без практически постоянного градиента напряжения между электродами.

2.5.64 образование путей утечки (трекинг) (tracking): Прогрессирующее образование токопроводящих путей на поверхности твердого электроизоляционного материала в результате комбинированных воздействий электрической нагрузки и электролитического загрязнения этой поверхности.

2.5.65 показатель относительной стойкости против тока утечки [сравнительный индекс трекингостойкости (СИТ)] [comparative tracking index (CTI)]: Числовое значение максимального напряжения в вольтах, при котором материал выдерживает 50 капель испытательного раствора без образования токопроводящих путей.

Примечания

1 Значение каждого испытательного напряжения и СИТ должно делиться на 25.

2 Определение по 2.3 IEC 60112.

2.5.66 номинальное напряжение цепи управления Ue (rated control circuit voltage): Номинальное напряжение, управляющее входным сигналом устройства управления.

2.5.67 номинальное напряжение питания цепи управления Us (rated control circuit supply voltage): Номинальное напряжение, подающее питание на входные выводы цепи управления.

2.6 Испытания

2.6.1 типовое испытание (type test): Испытание одного или нескольких аппаратов одной конкретной конструкции на соответствие конкретным техническим условиям.

2.6.2 контрольное испытание (routine test): Испытание, которому подвергают каждый отдельный аппарат во время и/или после его изготовления на соответствие конкретным критериям.

2.6.3 выборочное испытание (sampling test): Испытание некоторого числа аппаратов, случайно отобранных из партии.

2.6.4 специальное испытание (special test): Испытание, проводимое дополнительно к типовым и контрольным испытаниям по усмотрению изготовителя или по соглашению между изготовителем и потребителем.

2.7 Порты

2.7.1 порт (port): Средство связи аппаратуры с внешней электромагнитной средой (см. рисунок 17).

2.7.2 порт оболочки (enclosure port): Физическая граница аппаратуры, пропускающая или преграждающая воздействие электромагнитных полей.

2.7.3 кабельный порт (cable port): Порт для подсоединения к аппаратуре проводника или кабеля.

Примечание — Примером являются выводы сигнальной цели, служащие для передачи информации.

2.7.4 порт функционального заземления (functional earth port): Кабельный порт, кроме выводов главной, сигнальной цепи или вывода литания, предназначенный для соединения с землей не в целях электробезопасности.

2.7.5 порт сигнальной цепи (signal port): Порт для подсоединения к аппаратуре проводника или кабеля, предназначенного для проведения и передачи информации.

Примечание — Примером являются шины данных, сети коммуникации и управления.

2.7.6 порт питания [power port (control supply port)]: Порт для подсоединения проводника или кабеля, подводящего первичное электропитание, необходимое для работы (функционирования) аппаратуры. в том числе присоединенной аппаратуры.

2.7.7 порт главной цепи (main port): Порт для подсоединения проводника или кабеля к полюсу главной цепи оборудования.

Примечания

1 Примером являются выводы главной цвгы контактора.

2 В некотором оборудовании порт главной цели также является портом питания.

3 Классификация

В настоящем разделе приводятся характеристики аппаратов согласно информации, предоставленной изготовителем, без обязательной проверки испытаниями. Данный раздел не является обязательным в стандартах на аппараты конкретного вида, тем не менее в этих стандартах при необходимости указываются критерии классификации.

4 Характеристики

Ниже приведены алфавитный перечень характеристик (номинальных и неноминальных), их условное обозначение и номера пунктов настоящего стандарта, в которых приводится их описание:

8-часовой режим 4.3.4.1

категория применения 4.4

кратковременный режим 4.3.4.4

номинальная включающая способность 4.3.5.2

номинальная наибольшая включающая способность (lem) 4.3.6.2

номинальная наибольшая отключающая способность (/сл) 4.3.6.3

номинальная отключающая способность 4.3.5.3

номинальная предельная наибольшая отключающая способность (/С1/)

номинальная рабочая мощность 4.3.2.3

номинальная частота 4.3.3

номинальная эксплуатационная наибольшая отключающая способность <JCS)

номинальное импульсное выдерживаемое напряжение (Ц„,р) 4.3.1.3

номинальное напряжение в цепи управления (Ц.) 4.5.1

номинальное напряжение иэоляции(Ц) 4.3.1.2

номинальное напряжение изоляции ротора (Ц,) 22

номинальное напряжение изоляции статора ((/,,)

номинальное питающее напряжение цепи управления (us) 4.5.1

номинальное пусковое напряжение автотрансформаторного пускателя

номинальное рабочее напряжение [UJ 4.3.1.1

номинальное рабочее напряжение ротора (Uet)

номинальное рабочее напряжение статора (Ugs) 1*

номинальный длительный ток (/ы) 4.3.2.4

номинальный кратковременно допустимый ток (Zcw) 4.3.6.1

номинальный рабочий ток (/в) 4.3.2.3

номинальный рабочий ток ротора (1„) 1>

номинальный рабочий ток статора (zes)

номинальный ток (/„) 1>

номинальный условный ток короткого замыкания </) 4.3.6.4

периодический режим 4.3.4.5

повторно-кратковременный режим 4.3.4.3

полное сопротивление полюса коммутационного устройства (Z) 4.3.7

предельный ток селективности {/J 22

продолжительный режим 4.3.4.2

тепловой ток ротора (/№г) 22

Г0СТ1ЕС 60947-1—2017

тепловой ток статора (/,Л1)

ток координации (/e) 2.5.25

условный тепловой ток в оболочке (/,Ле) 4.3.2.2

условный тепловой ток на открытом воздухе (/) 4.3.2.1

Примечание — Вышеприведенный перечень не является исчерпывающим.

4.1 Общие требования

В стандарте на аппарат конкретного вида должны указываться применимые к аппарату характеристики:

• тип аппарата (см. 4.2);

- номинальные и предельные значения параметров главной цепи (см. 4.3);

- категория применения (см. 4.4);

• цели управления (см. 4.5);

- вспомогательные цепи (см. 4.6);

• реле и расцепители (см. 4.7);

- координация с устройствами для защиты от коротких замыканий (см. 4.8);

- коммутационные перенапряжения (см. 4.9).

4.2 Тип аппарата

В стандарте в обозначении типа аппарата следует указывать:

- вид аппарата, например контактор, автоматический выключатель и т. л.;

• число полюсов;

. рцд тика;

• среду, в которой происходит отключение:

• рабочие условия (способ оперирования, способ управления и т. д.).

Примечание — Вышеприведенное перечисление не является исчерпывающим.

4.3 Номинальные и предельные значения параметров главной цепи

Номинальные значения параметров главной цепи устанавливаются изготовителем. Их следует указывать в соответствии с 4.3.1—4.3.6 согласно требованиям стандарта на аппарат конкретного вида, но не обязательно все нижеперечисленные параметры.

4.3.1 Номинальные напряжения

Аппарат характеризуют следующие номинальные напряжения:

Примечание — Аппараты некоторых типов могут характеризоваться болев чем одним номинальным напряжением или диапазоном номинальных напряжений.

4.3.1.1 Номинальное рабочее напряжение (Us)

Номинальное рабочее напряжение аппарата — значение напряжения, е сочетании с номинальным рабочим током определяющее его назначение, на которое ориентируются при проведении соответствующих испытаний и установлении категории применения.

Для однополюсного аппарата номинальное рабочее напряжение, как правило, устанавливается как напряжение на полюсе.

Для многополюсного аппарата — как межфазное напряжение.

Примечания

1 Для некоторых аппаратов и областей применения возможен другой способ назначения Ue, который должен быть установлен е стандарте на соответствующий аппарат.

2 В применении к многополюсным аппаратам для многофазных цепей следует различать:

a) аппараты для систем, в которых одно замыкание на землю не приводит к появлению на полюсе полного межфазного напряжения (т. е. для систем без заземления или с заземленной нейтралью);

b) аппараты для систем, в которых одно замыкание на землю приводит к появлению на полюсе полного межфазного напряжения (т. е. для систем с заземлением фазы).

3 Для аппарата можно установить ряд комбинаций номинальных рабочих напряжений и номинальных рабочих токов или мощностей для различных режимов и категорий применения.

4 Для аппарата можно установить ряд номинальных рабочих напряжений и значений включающей и отключающей способностей для различных режимов и категорий применения.

5 Следует учитывать, что рабочее напряжение аппарата может отличаться от его эксплуатационного напряжения (см. 2.5.52).

4.3.1.2 Номинальное напряжение изоляции (Ц)

Номинальное напряжение изоляции аппарата — значение напряжения, по которому определяют испытательное напряжение при испытании электроизоляционных свойств и расстояний утечки.

Максимальное значение номинального рабочего напряжения аппарата не должно превышать наибольшего значения номинального напряжения изоляции.

Примечание — Не установленное номинальное напряжение изоляции аппарата следует принимать как наибольшее значение номинального напряжения.

4.3.1.3 Номинальное импульсное выдерживаемое напряжение (Цтр)

Номинальное импульсное выдерживаемое напряжение — пиковое значение импульсного напряжения заданной формы и полярности, которое может выдержать аппарат без повреждений в установленных условиях испытания и к которому отнесены значения воздушных зазоров.

Номинальное импульсное выдерживаемое напряжение аппарата не должно быть ниже значений переходного перенапряжения, случающегося в цепи, в которую включен аппарат.

Примечание — Предпочтительными являются значения номинального импульсного выдерживаемого напряжения согласно таблице 12.

4.3.2 Токи

Аппараты характеризуют следующие токи:

4.3.2.1 Условный тепловой ток на открытом воздухе (/)

Условный тепловой ток на открытом воздухе — максимальное значение испытательного тока, используемого при проверке превышения температуры аппаратов открытого исполнения (см. 8.3.3.3) на открытом воздухе.

Значение условного теплового тока на открытом воздухе должно превышать или в крайнем случае равняться максимальному номинальному рабочему току (см. 4.3.2.3} аппарата открытого исполнения в восьмичасовом режиме (см. 4.3.4.1).

Под открытым воздухом подразумевают нормальную атмосферу в помещении без сквозняков и внешней радиации.

Примечания

1 Условный тепловой ток на открытом воздухе не является номинальным параметром, его не обязательно маркировать на аппарате.

2 Аппарат открытого исполнения — это аппарат, поставляемый изготовителем без оболочки или с неотделимой оболочкой, не предназначенной служить единственной защитной оболочкой аппарата.

4.3.2.2 Условный тепловой ток в оболочке (1/ав)

Условный тепловой ток в оболочке — указанное изготовителем значение тока, который должен использоваться для испытаний на превышение температуры аппарата, смонтированного в предусмотренной для него оболочке.

Такие испытания проводят по 8.3.3.3 и в каталогах изготовителя аппарат обязательно обозначают как «применяемый в оболочке», он предназначается для эксплуатации в одной или нескольких оболочках установленного типа и размера (см. примечание 2).

Значение условного теплового тока в оболочке должно по крайней мере равняться максимальному значению номинального рабочего тока (см. 4.3.2.3) аппарата в оболочке в восьмичасовом режиме (см. 4.3.4.1).

Если аппарат предназначен для эксплуатации в нестандартных оболочках, проводить испытание необязательно в случае, если уже проводилось испытание с условным тепловым током на открытом воздухе (/). 8 этом случае изготовитель должен сообщить значение условного теплового тока в оболочке или понижающий коэффициент.

Примечания

1 Такое руководство может быть в форме публикации с указанием максимального номинального тока для заданных местных условий температуры окружающего воздуха (вокруг, в непосредственной близости от аппарата).

Пример 1:

АС-11е = 45 А при 40 вС. АС-11**40 А при 60 вС.

Пример 2:

llh - 200 А при 40 °C. Ith = 150 А при 60 °C.

Указанием таких параметров изготовитель информирует потребителя о пределах применения изделия независимо от размера или типа оболочки.

2 Условный тепловой ток в оболочке не является номинальным параметром, его не обязательно маркировать на аппарате.

3 Условный тепловой ток в оболочке допускается определять как для нввентилируемого аппарата. В этом случае размеры оболочки, используемой для испытаний, должны соответствовать минимальным размерам, указанным изготовителем в качестве допустимых при эксплуатации. При наличии информации изготовителя значение условного теплового тока в оболочке альтернативно может относиться к вентилируемому аппарату.

4 Аппарат закрытого исполнения — аппарат, предназначенный для использования в оболочке конкретного типа и размера или в оболочках разных типов и размеров.

4.3.2.3 Номинальный рабочий ток(/в) или номинальная рабочая мощность

Номинальный рабочий ток аппарата — ток. указанный изготовителем с учетом номинального рабочего напряжения (см. 4.3.1.1). номинальной частоты (см. 4.3.3). номинального режима (см. 4.3.4). категории применения (см. 4.4) и типа защитной оболочки (при наличии).

Для аппарата, осуществляющего прямую коммутацию отдельных двигателей, наряду с номинальным рабочим током или вместо него допускается указывать максимальную номинальную выходную мощность (при конкретном номинальном рабочем напряжении) двигателя, для которого предназначен этот аппарат. При необходимости изготовитель должен указать соотношение между рабочим током и рабочей мощностью (при наличии).

4.3.2.4 Номинальный длительный ток (/„}

Номинальный длительный ток — значение тока, указанное изготовителем, который может проводить аппарат в продолжительном режиме (см. 4.3.4.2).

4.3.3 Номинальная частота

Частота тока питания, на которую рассчитан аппарат, которой соответствуют его характеристики.

Примечание — Для одного и того же аппарата может быть установлен диапазон номинальных частот переменного тока либо он может работать как на переменном, так и на постоянном токе.

4.3.4 Номинальные режимы

К стандартным номинальным режимам относят:

4.3.4.1 Восьмичасовой режим

Режим, е котором главные контакты аппарата остаются замкнутыми, проводя установившийся ток достаточно долго для того, чтобы аппарат достиг теплового равновесия, но не более 8 ч без перерыва.

Примечания

1 Восьмичасовой режим является основным для определения условных тепловых токов / и 1#*.

2 Перерыв означает отключение тока путем оперирования аппаратом.

4.3.4.2 Продолжительный режим

Продолжительный режим — режим нагрузки, е котором главные контакты аппарата остаются замкнутыми. проводя установившийся ток без перерыва более 8 ч (в течение недель, месяцев, лет).

Примечание — Такой режим эксплуатации отличается от восьмичасового, поскольку на контактах могут накапливаться оксиды и грязь, вызывая постепенное увеличение их нагрева. При продолжительном режиме либо вводится коэффициент снижения номинальной мощности, либо применяется специальная конструкция (например, серебряные контакты).

4.3.4.3 Повторно-кратковременный периодический или повторно-кратковременный режим

Режим, в котором периоды нагрузки, когда контакты остаются замкнутыми, находятся в соотношении с периодами нулевой нагрузки, но те и другие интервалы времени недостаточны для того, чтобы аппарат успел достичь теплового равновесия.

Повторно-кратковременный режим характеризуется значением тока, длительностью его прохождения и коэффициентом нагрузки, который представляет собой отношение времени нахождения аппарата под нагрузкой к полному времени цикла, как правило, выраженное в процентах. Стандартные значения коэффициента нагрузки 15.25. 40 и 60 %.

По числу циклов оперирования, которое они могут выполнять за один час. аппараты подразделяют на следующие классы.

Класс Цикл/ч

1...........................................1

3...........................................3

12..........................................12

30..........................................30

120.........................................120

300.........................................300

1200........................................1200

3000........................................3000

12000 ......................................12000

30 000 ...................................... 30 000

120 000 300 000


.....................................120 000

.....................................300 000


Для повторно-кратковременного режима с большим числом циклов оперирования за 1 ч изготовитель должен указать в реальных циклах (если известно) или в условных циклах, по его усмотрению, значения номинальных рабочих токов, которые должны соответствовать неравенству:

т

Т или f?hg ■ Г (что применимо), о

где Т — полная длительность цикла оперирования.

Примечание — Вышеприведенная формула не учитывает энергию коммутационной дуги.

Коммутационный аппарат, рассчитанный на повторно-кратковременный режим, допускается ха-рактериэовать параметрами этого режима.

Пример — Повторно-кратковременный режим класса 12, в котором ток 100 А проходит в течение 2 мин из каждых S мин. можно обозначить: 100 А. класс 12, 40 %.

4.3.4.4 Кратковременный режим

Режим, в котором главные контакты аппарата остаются замкнутыми в течение периодов времени, не достаточных для достижения аппаратом теплового равновесия, которые чередуются с Периодами нулевой нагрузки достаточной длительности для восстановления равенства температуры аппарата с температурой охлаждающей среды.

Стандартизированные значения для кратковременного режима: 3.10.30, 60 и 90 мин при замкнутых контактах.

4.3.4.5 Периодический режим

Режим, предусматривающий регулярное повторение срабатывания аппарата при постоянной либо при переменной нагрузке.

4.3.5 Характеристики нормальной нагрузки и перегрузки

В настоящем пункте приведены общие требования, касающиеся номинальных параметров аппарата при нормальной нагрузке и в условиях перегрузки.

Примечание — Требования к работоспособности аппарата в условиях перегрузки могут включаться в категории применения, описанные в 4.4.

Подробные требования — в соответствии с 7.2.4.

4.3.5.1 Способность выдерживать коммутационные токи перегрузки двигателя

Аппарат, предназначенный для коммутации двигателя, должен быть способен выдерживать тепловые нагрузки, обусловленные пуском и разгоном двигателя до нормальной скорости и рабочими перегрузками.

Подробные требования, связанные с удовлетворением этих условий, содержатся в стандарте на аппарат конкретного вида.

4.3.5.2 Номинальная включающая способность

Номинальная включающая способность аппарата —- указанное изготовителем значение тока, который аппарат может удовлетворительно коммутировать в установленных условиях включения.

К условиям включения следует отнести:

- напряжение до включения (см. 2.5.32);

• характеристики испытательной цепи.

Номинальную включающую способность указывают применительно к номинальному рабочему напряжению и номинальному рабочему току согласно стандарту на аппарат конкретного вида.

Примечание 1 — Если необходимо, в стандарте на соответствующий аппарат указывается взаимосвязь между номинальной включающей способностью и категорией применения

На переменном токе номинальная включающая способность выражается действующим значением симметричной составляющей тока, которое принимается за постоянное.

Примечание 2 — На переменном токе пиковое значение тока в первые лолупериоды после замыкания главных контактов может оказаться значительно выше пикового значения тока в установившемся режиме, используемого при определении включающей способности в зависимости от коэффициента мощности цепи и момента на волне напряжения, когда происходит замыкание

Аппарат должен включать ток. периодическая составляющая которого равна определяющей его номинальную включающую способность при любом значении непериодической составляющей а пределах, обусловленных коэффициентами мощности, указанными в стандарте на аппарат конкретного вида

4.3.5.3 Номинальная отключающая способность

Номинальная отключающая способность аппарата — указанное изготовителем значение тока, который аппарат может удовлетворительно отключать в заданных условиях отключения.

К заданным условиям отключения относят:

- характеристики испытательной цепи;

- восстанавливающееся напряжение промышленной частоты.

Номинальная отключающая способность указывается применительно к номинальному рабочему напряжению и номинальному рабочему току согласно стандарту на аппарат конкретного вида.

Аппарат должен отключать любой ток до установленной номинальной отключающей способности включительно.

Примечание 1 — У коммутационного аппарата может быгь несколько значений номинальной отключающей способности, каждое из которых соответствует рабочему напряжению и категории применения.

На переменном токе номинальная отключающая способность выражается действующим значением симметричной составляющей тока.

Примечание 2 — По возможности в стандарте на аппарат конкретного вида указывают взаимосвязь между номинальной отключающей способностью и категорией применения.

4.3.6 Характеристики при коротких замыканиях

В настоящем пункте приведены общие требования к номинальным параметрам в условиях короткого замыкания.

4.3.6.1 Номинальный кратковременно допустимый ток (/w)

Номинальный кратковременно допустимый ток — установленное изготовителем значение кратковременного тока, который аппарат может проводить без повреждений в условиях испытаний, оговоренных в стандарте на аппарат конкретного вида.

4.3.6.2 Номинальная наибольшая включающая слособность (У^)

Номинальная наибольшая включающая способность аппарата — установленное изготовителем для конкретного аппарата значение наибольшей включающей способности при данных значениях номинального рабочего напряжения, номинальной частоты и указанном коэффициенте мощности для переменного тока или постоянной времени для постоянного тока. Она выражается как максимальный ожидаемый пиковый ток в заданных условиях.

4.3.6.3 Номинальная наибольшая отключающая способность <Jcn}

Номинальная наибольшая отключающая способность аппарата — установленное изготовителем для этого аппарата значение наибольшей отключающей способности при данных значениях номинального рабочего напряжения, номинальной частоты и указанном коэффициенте мощности для переменного тока или постоянной времени для постоянного тока. Она выражается значением ожидаемого тока отключения (действующим значением периодической составляющей для переменного тока) в заданных условиях.

4.3.6.4 Номинальный условный ток короткого замыкания (/q)

Номинальный условный ток короткого замыкания аппарата — указанное изготовителем значение ожидаемого тока, который этот аппарат, оснащенный предусмотренным изготовителем устройством для защиты от коротких замыканий, может удовлетворительно выдерживать в течение времени срабатывания этого устройства в условиях испытания, оговоренных в стандарте на аппарат конкретного вида.

Детальное описание устройства для защиты от коротких замыканий должно быть представлено изготовителем.

Примечания

1 На переменном токе номинальный условный ток короткого замыкания выражается действующим значением периодической составляющей.

2 Устройство для защиты от коротких замыканий может составлять неотъемлемую часть конкретного аппарата либо быть автономным.

4.3.7 Полное сопротивление полюса коммутационного устройства (Z)

Полное сопротивление полюса может устанавливаться изготовителем, его определяют измерением падения напряжения при прохождении тока через полюс.

4.4 Категория применения

Категория применения аппарата определяет предполагаемую область его использования и должна указываться в стандарте на аппарат конкретного вида. Она характеризуется одним или несколькими из условии эксплуатации:

- ток (токи), кратный номинальному рабочему току;

- напряжение (напряжения), кратное номинальному рабочему напряжению;

- коэффициент мощности или постоянная времени:

- работоспособность в условиях короткого замыкания;

- селективность;

- прочие условия эксплуатации в меру применимости.

Примеры категорий применения низковольтной аппаратуры распределения и управления приведены в приложении А.

4.5 Цепи управления

4.5.1 Электрические или электронные цепи управления

К характеристикам электрических и электронных цепей управления относят:

- род тока.

- номинальную частоту или постоянный ток;

- номинальное напряжение в цели управления Uc (переменного, постоянного тока);

- номинальное питающее напряжение цепи управления Us (переменного, постоянного тока), если применимо;

- вид устройств внешней цепи управления (контакты, датчики, оптопары, электронные активные элементы и т. д.);

- потребляемую мощность.

Примечание — Различают напряжение в цепи управления Uc и напряжение питания цепи управления которое может отличаться от напряжения Uc в цепи управления из-за наличия встроенных трансформаторов. выпрямителей, сопротивлений, электронных схем и т. д.

Заданные условия работы обеспечиваются при питающем напряжении цепи управления от 85 до 110 % его номинального значения Us при максимальном значении тока в цепи управления.

Электронная часть электромагнита с электронным управлением может составлять его неотъемлемую часть либо являться отдельной частью при условии, что она представляет внутреннюю функцию аппарата. В обоих случаях аппарат должен испытываться вместе с электронной частью, смонтированной как для нормальной эксплуатации.

В приложении U даны примеры разных конфигураций цепей.

Номинальные параметры и характеристики аппаратов для цепей управления должны соответствовать требованиям IEC 60947-5-1 (см. примечание к разделу 1).

4.5.2 Питающие воздухопроводы (пневматические или электропневматические)

Питающие воздухопроводы характеризуются:

- номинальным давлением и его предельными значениями;

• расходом воздуха при атмосферном давлении для осуществления каждой операции замыкания и каждой операции размыкания.

Номинальным давлением питания пневматического или электропневматического воздухопровода служит давление воздуха, на котором основываются рабочие характеристики пневматической системы управления.

4.6 Вспомогательные цепи

Вспомогательные цепи характеризуются числом и родом контактов (контакт «а», контакт «Ь» и т. д.) в каждой из этих цепей и номинальными параметрами согласно IEC 60947-5-1 (см. примечание к разделу 1).

Характеристики вспомогательных контактов и выключателей должны отвечать требованиям IEC 60947-5-1.

4.7 Реле и расцепители

Если требуется, в стандарте на аппарат конкретного вида должны указываться следующие характеристики реле и расцепителей:

- тип реле или расцепителя:

- номинальные значения:

- уставка тока или диапазон уставок;

- еремятоковые характеристики (см. 4.8);

- влияние температуры окружающего воздуха;

- расширенные функции по приложению Т.

4.8 Координация с устройствами для защиты от коротких замыканий (УЗКЗ)

Изготовитель должен указать тип или характеристики УЗКЗ, подлежащих использованию в сочетании с данными аппаратами или в составе данных аппаратов в зависимости от конкретных условий, а также максимальный ожидаемый ток короткого замыкания, на который рассчитан конкретный аппарат, в том числе УЗКЗ. при одном или нескольких указанных значениях рабочего напряжения.

Примечание — Рекомендации по координации с УЗКЗ даны в IECZTR 61912-1.

4.9 Коммутационные перенапряжения

Изготовитель должен указать максимальное значение коммутационного перенапряжения, вызываемого срабатыванием коммутационного аппарата (если этого требует стандарт на аппарат конкретного вида).

Это значение не должно превышать значения номинального импульсного выдерживаемого напряжения (см. 4.3.1.3).

5 Информация об аппарате

5.1 Характер информации

В соответствии с требованиями стандарта на аппарат конкретного вида изготовитель должен предоставить следующую информацию об идентификации, включающую:

- наименование изготовителя или торговую марку;

- типовое обозначение или серийный номер;

- обозначение стандартов, о соответствии которым заявляет изготовитель;

- характеристики, такие как:

« номинальные рабочие напряжения (см. 4.3.1.1 и примечание к 5.2);

- категория применения и номинальные рабочие токи (или номинальные мощности, или

номинальные длительные токи) при номинальных рабочих напряжениях аппарата (см. 4.3.1.1.

4.3.2.3, 4.3.2.4 и 4.4). В некоторых случаях эта информация может дополняться значением контрольной температуры окружающего воздуха, при которой аппарат калиброван;

• значение номинальной частоты (частот) (например. 50 или 50/60 Гц) и/или обозначение

«d.c.», или условное обозначение s=ZRS;

• номинальный режим (для повторно кратковременного режима суказанием класса, см. 4.3.4):

• номинальная включающая и/или отключающая способности. Если требуется, эти данные можно заменить указанием категории применения:

- номинальное напряжение изоляции (см. 4.3.1.2};

- номинальное импульсное выдерживаемое напряжение (см. 4.3.1.3);

* характеристики реле или расцепителей (см. 4.7);

- коммутационное перенапряжение (см. 4.9);

- номинальный кратковременно допустимый ток с указанием его длительности, если требуется (см. 4.3.6.1);

- номинальная наибольшая включающая и/или отключающая способности при их наличии

(см. 4.3.6.2 и 4.3.6.3):

- номинальный условный ток короткого замыкания, если требуется (см. 4.3.6.4);

- код IP для аппаратов в оболочках (см. приложение С);

- степень загрязнения (см. 6.1.3.2);

- тип и максимальные значения параметров устройства для защиты от коротких замыканий при его наличии;

* класс защиты от электрического удара (см. IEC 61140);

- номинальное напряжение в цепи управления, род тока и частота;

* питающее напряжение цепи управления, род тока и частота, если они иные, чем у катушки управления;

* номинальное давление воздуха на входе и пределы его колебаний (для аппаратов, управляемых давлением воздуха);

- пригодность для разьединения;

- полное сопротивление полюса коммутационного устройства (Z);

- декларация о соответствии материалов согласно приложению W;

- длина снимаемой изоляции перед введением проводника в зажим;

- максимальное число проводников, которые могут быть зажаты.

Для неуниверсальных безрезьбовых выводов обозначения:

> ms» или «sol» для выводов, предназначенных для жестких одножильных проводников;

- «г» для выводов, предназначенных для жестких (одножильных и скрученных) проводников;

« «f» для выводов, предназначенных для гибких проводников.

В случае электромагнитов с электронным управлением может также потребоваться другая информация. например конфигурация цепи управления (см. 4.5 и приложение U).

Примечание — Данное перечисление не является исчерпывающим.

5.2 Маркировка

Информация, приведенная в 5.1. подлежащая маркировке на аппарате, должна быть указана в стандарте на аппарат конкретного вида.

Маркировка должна быть нестираемой и легкочитаемой.

Наименование изготовителя или торговую марку, а также обозначение типа или серийный номер обязательно маркируют на аппарате, предпочтительно на фирменной табличке (если имеется) для получения от изготовителя полной информации.

Примечание — В США и Канаде номинагъное рабочее напряжение (?в допускается маркировать различными способами:

a) на аппарате, предназначенном для использования в трвхфаэных системах с четырьмя проводами, маркируют напряжение между фазой и землей и межфазное напряжение, например 277/480 В:

b) не аппарате, предназначенном для использования в трехфазных системах с тремя проводами, маркируют межфазное напряжение, например 480 В.

Маркировка должна быть видна также после установки аппарата. Вышесказанное относится и к следующей информации:

- направление движения органа управления (см. 7.1.5.2). если требуется;

- индикация положения органа управления (см. также 7.1.6.1 и 7.1.6.2);

- знак одобрения или сертификации (при его наличии);

- для миниатюризированных аппаратов условное обозначение, цветовой или буквенный код;

- идентификационное обозначение выводов (см 7.1.8.4);

- код IP и класс защиты от электрического удара, если требуется (по возможности маркируют на аппарате);

■ пригодность для разъединения (если требуется)символомфункции разъединения по IEC 60617-7. позиция 07*01*03. дополненным символом функции конкретного аппарата, например:


для автоматического выключателя, пригодного для разъединения:

для выключателя-разъединителя, пригодного для разъединения.

Символ должен иметь четкую маркировку и быть видимым после установки аппарата, смонтированного как для обычной эксплуатации с доступом к органу управления.

Данное требование относится как к аппаратам в оболочке, таки без оболочки по 7.1.11. Настоящее требование также действует, если символ функции разъединения введен в схему цели

и является единственной маркировкой, указывающей на пригодность для разъединения.

В случае электромагнитов с электронным управлением может также потребоваться информация.

кроме приведенной в 5.1 (см. также 4.5 и приложение U).

Маркировка «в», «sola, «г* и «fa может быть нанесена на аппарат или. если на аппарате недо

статочно места, на минимальную упаковочную единицу либо приведена в товаросопроводительной документации.

Если вместе расположены группы выводов, то достаточно одной маркировки на аппарате.

5.3 Инструкции по монтажу, эксплуатации и обслуживанию

Изготовитель в своих документах или каталогах должен указать предъявляемые к аппарату условия по монтажу, эксплуатации и обслуживанию в нормальных условиях эксплуатации и в аварийных условиях.

При необходимости изготовитель должен указать меры, предпринимаемые по ЭМС.

Для аппаратов, пригодных только для окружающей среды А (см. 7.3.1), изготовитель в документации для потенциальных потребителей и в документации на изделие для потребителей обязан сделать следующую запись:

ПРЕДУПРЕЖДЕНИЕ

Данное изделие предназначено для применения в окружающей среде А. Применение данного изделия в условиях окружающей среды В может вызвать нежелательные электромагнитные помехи. 8 этом случае потребителю может потребоваться принятие адекватных противодействующих мер.

При необходимости в инструкциях по транспортированию, монтажу и эксплуатации аппарата могут быть указаны основные требования, обеспечивающие его правильную установку, пуск, эксплуатацию и оперирование.

В вышеупомянутых инструкциях следует уточнить объем и частоту обслуживания (если требуется).

Примечание — Не все аппарагы. на которые распространяется настоящий стандарт, спроектированы в расчете на обслуживание.

5.4 Информация об окружающей среде

Декларация о соответствии материалов должна быть предусмотрена, если того требует стандарт на конкретное изделие.

6 Нормальные условия эксплуатации, монтажа и транспортирования

6.1 Нормальные условия эксплуатации

Аппараты, соответствующие требованиям настоящего стандарта, должны быть работоспособны е нормальных (стандартных) условиях эксплуатации, приведенных в настоящем разделе.

Примечание — О нестандартных условиях эксплуатации см. в приложении В. Эксплуатация в нестандартных условиях может потребовать заключение соглашения между изготовителем и потребителем.

6.1.1 Температура окружающего воздуха

Температура, окружающего воздуха не должна превышать 40 °C. а ее среднее значение е течение 24 ч — 35 °C.

Нижний предел температуры окружающего воздуха — минус 5 °C.

Температуру окружающего воздуха определяют вблизи аппарата, если он поставляется без оболочки. или вблизи оболочки при поставке аппарата в оболочке.

Примечания

1 Аппараты для эксплуатации при температуре окружающего воздуха се. плюс 40 °C (например, в кузнях, котельных, в тропических странах) или ниже минус 5 °C. например при минус 25 °C, в соответствии с серией IEC 61439 для устройств распределения и управления, монтируемых вне помещения, должны проектироваться специально для этих условий или (если эго целесообразно) эксплуатироваться согласно стандарту на аппарат конкретного вида при соглашении между изготовителем и потребителем по отдельным вопросам. Заменой такого соглашения может служить информация изготовителя, приведенная в технической документации.

2 Стандартная контрольная температура воздуха для некоторых типов аппаратов, например автоматических выключателей или реле перегрузки для пускателей, указывается в стандарте на аппарат конкретного вида.

6.1.2 Высота над уровнем моря

Высота установки аппарата над уровнем моря не должна превышать 2000 м.

Примечание — Если аппарат будет эксплуатироваться на высоте более 2000 м. необходимо учитывать снижение электрической прочности изоляции и охлаждающее воздействие воздуха. Аппарат для эксплуатации в этих условиях должен иметь специальную конструкцию или использоваться по согласованию между изготовителем и потребителем.

6.1.3 Атмосферные условия

6.1.3.1 Влажность

Относительная влажность воздуха, в котором эксплуатируют аппарат, не должна превышать 50 % при максимальной температуре 40 °C. При более низких температурах допускается более высокая относительная влажность, например 90 % при 20 °C. В случае возможной конденсации влаги из-за колебаний температуры может потребоваться принятие специальных мер.

Примечание — Бопееточносостояниеокружающейсредыолределявтсястепеньюзагрязнениялоб.1.3.2.

6.1.3.2 Степень загрязнения

Степень загрязнения (см. 2.5.58) относится к условиям окружающей среды, для которой предназначается конкретный аппарат.

Примечание — На изоляцию влияет микросреда расстояний утечки или воздушных зазоров, а не среда, в которой находится аппарат. Эта микросреда может быть лучше или хуже окружающей аппарат среды. Она включает в себя все факторы, влияющие на изоляцию: климатические и электромагнитные, загрязнение и т. л.

Для аппаратов, предназначенных для эксплуатации в оболочках или снабженных неотделимыми оболочками, действительна степень загрязнения среды е оболочке.

Для оценки воздушных зазоров и расстояний утечки установлены четыре степени загрязнения микросреды (соответствие воздушных зазоров и расстояний утечки степеням загрязнения представлено в таблицах 13 и 15).

Степень загрязнения 1:

Отсутствие загрязнения или наличие только сухого, нетокопроводящего загрязнения.

Степень загрязнения 2:

Нормальным является только нетокопроводящее загрязнение. Однако следует допустить возможность временной проводимости из-за конденсации влаги.

Степень загрязнения 3:

Допустимо токопроводящее загрязнение или сухое, нетокопроводящее загрязнение, которое становится токопроводящим вследствие ожидаемой конденсации влаги.

Степень загрязнения 4:

Загрязнение обусловливает устойчивую проводимость, вызванную, например, токопроводящей пылью или дождем или снегом.

Стандартная степень загрязнения промышленной среды:

При отсутствии других указаний в стандарте на аппарат конкретного вида аппараты промышленного применения предназначаются для использования в среде со степенью загрязнения 3.

Однако в зависимости от конкретной области применения или микросреды допускаются также другие степени загрязнения.

Примечание — На степень загрязнения микросреды аппарата может влиять то, что он смонтирован в оболочке.

Степень загрязнений е бытовом и аналогичных секторах:

При отсутствии других указаний в стандарте на соответствующий аппарат аппараты для бытового и аналогичных секторов, как правило, предназначаются для использования в среде со степенью загрязнения 2.

6.1.4 Толчки и вибрации

Стандартные характеристики толчков и вибраций, воздействию которых могут подвергаться аппараты. находятся в стадии рассмотрения.

6.2 Условия транспортирования и хранения

Если условия транспортирования и хранения отличаются от указанных в 6.1, необходимо специальное соглашение между потребителем и изготовителем, исключением является то. что при отсутствии других рекомендаций диапазон температур во время транспортирования и хранения аппаратов составляет от минус 25 °C до плюс 55 °C. а на короткие периоды (не более 24 ч} — не более плюс 70 °C.

Аппараты, подвергающиеся воздействию вышеуказанных предельных температур в нерабочем состоянии, не должны иметь повреждений, препятствующих их дальнейшей работе в предназначенных условиях эксплуатации.

6.3 Монтаж

Монтаж аппаратов должен проводиться в соответствии с инструкциями изготовителя.

7 Требования к конструкции и работоспособности

7.1 Требования к конструкции

7.1.1 Общие положения

Конструкция аппарата с неотделимой или демонтируемой оболочкой (при ее наличии) должна выдерживать нагрузки, происходящие при монтаже и нормальной эксплуатации, и кроме того, обеспечивать необходимую степень стойкости к аномальному нагреву и огню.

Требования к испытанию раскаленной проволокой для материалов демонтируемых оболочек содержатся в стандартах конкретного вида, например IEC 62208.

Примечание — Общепризнанна необходимость в снижении воздействия естественной окружающей среды на изделие во всех фазах его жизненного цикла. Аспекты влияния окружающей среды на изделия, отвечающие требованиям серии IEC 60947, определены в приложении О настоящего стандарта.

7.1.2 Материалы

7.1.2.1 Общие требования к материалам

Части из изоляционного материала, которые могут подвергаться тепловым нагрузкам вследствие электромагнитных процессов внутри аппарата, не должны подвергаться неблагоприятному воздействию аномального нагрева и огню.

Изготовитель должен указать применяемый метод испытания по 7.1.2.2 либо 7.1.2.3.

7.1.2.2 Испытание раскаленной проволокой

Пригодность применяемых в конструкции материалов проверяют испытаниями:

a) аппарата:

b) фрагментов аппарата;

c) образцов идентичного материала, имеющих типовую толщину;

d) предоставлением данных от поставщика о соответствии изоляционного материала требованиям IEC 60695-2-12.

Пригодность материала определяют с точки зрения стойкости к аномальному нагреву и огню.

Изготовитель должен указать метод а). Ь), с) или d).

Если применяемый материал имеет поперечное сечение, подобное уже выдержавшему одно из испытаний на соответствие требованиям 8.2.1. то эти испытания не повторяют.

Аппарат подвергают испытанию раскаленной проволокой для конечного продукта по IEC 60695-2-10 и IEC 60695-2-11.

Части аппарата из изоляционного материала, удерживающие токоведущие части, должны выдержать испытания раскаленной проволокой по 8.2.1.1.1 при испытательной температуре 850 °C или 960 °C в зависимости от предполагаемого воздействия огня. Стандарты на аппараты конкретных видов должны определять соответствующее значение испытательной температуры, учитывая IEC 60695-2-11. приложение А.

Насти из изоляционного материала, кроме названных выше, должны соответствовать требованиям испытания по 8.2.1.1.1 при температуре 650 °C.

Примечание — Для небольших деталей по IEC 60695-2-11 в стандарте на аппарат конкретного вида допустимо указывать другое испытание (например, испытание игольчатым пламенем согласно IEC 60695-11-5). Эту же методику можно использовать по другим причинам, например, если металлическая часть велика по сравнению с частью из изоляционного материала (например, в клеммных колодках). Испытание иголкнагым пламенем проводят в качестве альтернативного при проверке соблюдения требований огнезащиты на водном транспорте.

7.1.2.3 Испытание по категории воспламеняемости

Испытание материалов следует проводить в соответствии с их классификацией по воспламеняемости раскаленной проволокой и. если возможно, горением дуги, как указано в 8.2.1.1.2.

Испытания на материалах проводят согласно приложению М. Соответствия испытательных значений при испытаниях раскаленной проволокой (ИРП) и горением электрической дуги (ЭД) категориям воспламенения твердых материалов — по приложению М. таблица М.1 или М.2.

Альтернативно изготовитель может привести данные от поставщика изоляционного материала, отвечающие требованиям приложения М.

7.1.3 Токопроводящие части и их соединения

Токопроводящие части должны характеризоваться необходимой механической прочностью и токопроводящей способностью, соответствующей их предполагаемому назначению.

В электрических соединениях контактное давление не должно передаваться через изоляционный материал, кроме керамики или другого материала с аналогичными характеристиками, если металлические части не обладают достаточной упругостью для компенсации любой возможной усадки или пластичности изоляционного материала.

Соответствие проверяют осмотром и проведением испытания согласно стандарту на аппарат конкретного вида.

Примечание — В США применение зажимов, в которых давление передается через кэопядионкые материалы. за исключением керамики, допускается только в случаях, если:

1) зажим является частью клеммной колодки:

2) испытание на превышение температуры показывает, что пределы температур изоляционных материалов и выводов в соответствии с требованиями стандарта на аппарат не превышены:

3) упругий металл, применяемый в конструкции зажима, компенсирует снижение контактного давления вследствие усадки или деформации изоляционного материала.

7.1.4 Воздушные зазоры и расстояния утечки

7.1.4.1 Общие положения

Для аппаратов, испытанных по 8.3.3.4. действительны минимальные значения по таблицам 13 и 15.

Требования к электроизоляционным свойствам — в соответствии с 7.2.3.

Для всех прочих случаев минимальные значения параметров приведены в стандарте на аппарат конкретного вида.

Примечание — В зависимости от степени риска (уровень вреде и вероятность возникновения), а также недоступности опасных токоведущих частей различают нормальные условия эксплуатации (см. 6.1) и условия единичного отказа (см. 4.2 IEC 61140:2001.7.1.10 и приложение N).

7.1.4.2 Перегородки для координации изоляции для расстояний утечки

При применении твердой изоляции в качестве перегородки для координации изоляции, соответствующей требуемым расстояниям утечки, материал должен соответствовать требованиям к пригодности по 7.1.2.2 или требованиям по воспламеняемости по 7.1.2.3.

7.1.4.3 Перегородки для координации изоляции для изоляционных промежутков

При применении твердой изоляции в качестве перегородки для координации изоляции, соответствующей требуемым изоляционным промежуткам и не являющейся физической опорой и поддержкой относительного положения для вовлеченных неизолированных частей, материал перегородки должен отвечать требованиям к раскаленной проволоке по 7.1.2.2 и должен соответствовать требованиям к испытаниям раскаленной проволокой по 8.2.1.1.1 при температуре 650 °C или значениям ЭД по таблице М.2. Альтернативно материал должен соответствовать требованиям 7.1.4.2.

7.1.5 Орган управления

7.1.5.1 Изоляция

Орган управления аппаратом следует изолировать от частей, находящихся под напряжением, с учетом номинального напряжения изоляции и. если требуется, номинального импульсного выдерживаемого напряжения.

Кроме того, если орган управления выполнен из металла, он должен быть пригоден для надежного присоединения к защитному проводнику (если не снабжен дополнительной надежной изоляцией). а если он из изоляционного материала или покрыт таким материалом, то любая внутренняя металлическая часть, которая может оказаться доступной в случае повреждения изоляции, также должна быть изолирована от находящихся под напряжением частей с учетом номинального напряжения изоляции.

7.1.5.2 Направление движения

Направление движения органа управления должно соответствовать требованиям IEC 60447. Если устройства не соответствуют этим требованиям, например устройства специального назначения или при наличии различных монтажных положений, они должны иметь четкую маркировку, исключающую ошибочную идентификацию положений «I» и «О» и направления движения органа управления.

7.1.6 Указание положения контактов

7.1.6.1 Средства индикации

Если аппарат снабжен средствами индикации замкнутого и разомкнутого положения, они должны быть выполнены так. чтобы при считывании показаний они были четкими и ясными. Для этой цели используют указатель положения (см. 2.3.18).

Примечание — На аппарате закрытого исполнения индикация необязательно должна быть видна снаружи оболочки.

В стандарте на аппарат конкретного вида может уточняться, следует ли оснащать его таким указателем.

В случае если используются условные обозначения, замкнутое и разомкнутое положения указывают соответственно символами согласно IEC 60417-2:

«I» — включенное положение (5007 IEC 60417-2);

«О» — отключенное положение (5008 IEC 60417-2).

У аппаратов с кнопочным управлением только нажимная кнопка, предназначенная для размыкания. должна быть красной или маркирована символом «О».

Красный цвет не может использоваться для другой кнопки.

Цвет других нажимных кнопок, подсветка и сигнальные лампочки должны соответствовать IEC 60073.

7.1.6.2 Индикация с помощью органа управления

Если для указания положения контактов используется орган управления, он должен автоматически доводиться до упора, а по освобождении оставаться неподвижным в положении, соответствующем положению подвижных контактов; в этом случае у органа управления должны быть два четко различающихся положения покоя, как у подвижных контактов, но для автоматического размыкания может предусматриваться третье, четко отличающееся положение органа управления.

7.1.7 Дополнительные требования к аппаратам, пригодным для разъединения

7.1.7.1 Дополнительные требования к конструкции

Примечание — 8 США аппараты. соответствующие дополнительным требованиям, не считают обеспечивающими сами по себе функцию разьединения. Требования к разъединению и методика содержатся в соответствующих национальных нормах и стандартах на обслуживание.

Аппарат, пригодный для разьединения, должен обеспечивать в разомкнутом положении (см. 2.4.21) изолирующий промежуток в соответствии с требованиями к выполнению функции разъединения (см. 7.2.3.1 и 7.2.7). Указание положения главных контактов должно обеспечиваться одним из следующих средств индикации:

- положением органа управления;

- специальным механическим индикатором;

- возможностью визуального осмотра главных подвижных контактов.

Эффективность каждого из средств индикации, предусмотренных на аппарате, и их механическую прочность проверяют по 8.2.5.

Если изготовителем предусмотрено или указано устройство блокировки аппарата в разомкнутом положении, блокировка в этом положении должна быть возможна, только если главные контакты находятся в разомкнутом положении.

Проверяют по 6.2.5.

Конструкция аппарата должна быть такой, чтобы установленные на аппарате орган управления, фронтальная панель или крышка обеспечивали правильное указание положения контактов и блокировки (если предусмотрена).

Примечания

1 Для специальных назначений аппарата допускается блокировка в замкнутом положении.

2 Если для блокировки используются вспомогательные контакты, изготовитель должен указать время срабатывания вспомогательных и главных контактов. Более специфичные требования могут содержаться в стандарте на аппарат конкретного вида.

Указанное разомкнутое положение является единственным положением, е котором обеспечивается требуемый изолирующий промежуток между контактами.

У аппаратов, снабженных положением расцепления или резервным положением, которые не являются указанным разомкнутым положением, эти положения должны четко различаться. Маркировка этих положений не должна содержать символов «I» или «О».

Орган управления, имеющий только одно положение покоя, не пригоден для указания положения главных контактов.

7.1.7.2 Дополнительные требования калпаратам. снабженным средствами электрической блокировки с контакторами или автоматическими выключателями

Если аппарат, пригодный для разьединения, снабжен блок-контактом для электрической блокировки с кинтактиром или автоматическим выключателем и предназначен для применения в цепях двигателей, кроме категории применения АС-23, к нему применимы следующие требования.

Номинальные параметры блок-контакта, указанные изготовителем, должны соответствовать IEC 60947-5-1.

Временной интервал между размыканием блок-контакта и контактов главных полюсов должен быть достаточным, чтобы сблокированный с ним контактор или автоматический выключатель отключил ток до размыкания контактов главных полюсов аппарата.

При отсутствии иных указаний изготовителя временной интервал должен быть не менее 20 мс. если аппарат оперируется согласно указаниям изготовителя.

Соответствие следует проверять измерением временного интервала между моментом размыкания блок-контакта и моментом размыкания контактов главных полюсов в обесточенном состоянии, если аппарат оперируется согласно инструкциям изготовителя.

Во время операции замыкания блок-контакт должен замыкаться после или одновременно с контактами главных полюсов.

Удобный интервал времени размыкания может обеспечиваться также средним положением (между положениями «вкл.» и «откл.»). при котором контакт(ы) электрической блокировки находится(ятся) е разомкнутом положении, а контакты главных полюсов остаются замкнутыми.

7.1.7.3 Дополнительные требования к аппаратам, снабженным устройствами для блокировки навесными замками в разомкнутом положении

Конструкция устройств блокировки должна быть такой, чтобы их невозможно было снять с установленными навесными замками. Если аппарат блокирован даже одним навесным замком, то не должно быть возможно, оперируя органом управления, снизить воздушный зазор между разомкнутыми контактами до пределов несоответствия требованиям 7.2.3.1. перечисление Ь).

Конструкцией могут быть предусмотрены устройства блокировки навесными замками, препятствующие доступу к органу управления.

Соответствие требованиям к замыканию органа управления следует проверять с использованием навесного замка, указанного изготовителем, или эквивалентного запора, обеспечивающего самые неблагоприятные условия для имитации блокировки. Усилие F. указанное в 8.2.5.2,1. следует приложить к органу управления е попытке перевести аппарат из разомкнутого положения в замкнутое. Во время прикладывания усилия F на разомкнутые контакты аппарата должно подаваться испытательное напряжение. Аппарат должен быть способен выдержать испытательное напряжение согласно таблице 14. соответствующее номинальному импульсному выдерживаемому напряжению.

7.1.8 Выводы

7.1.8.1 Требования к конструкции

Части выводов, поддерживающие контакт и проводящие ток. должны изготавливаться из металла достаточной механической прочности.

Соединения выводов должны обеспечивать возможность присоединения проводников с помощью винтовых, безвинтовых или других эквивалентных приспособлений, создающих необходимое контактное давление.

Конструкция выводов должна допускать зажим проводников между предусмотренными для этого поверхностями без нанесения значительного повреждения проводникам или выводам.

Выводы не должны допускать смещения проводников или сами смещаться так, чтобы нарушалась работа аппарата, а напряжение изоляции не должно снижаться ниже номинальных значений.

Согласно назначению проводники могут подсоединяться к выводам с помощью кабельных наконечников. предназначенных исключительно для медных проводников.

Примечание 1 — Примеры габаритных размеров кабельных наконечников для прямого подсоединения к штифтовым выводам приведены в приложении Р.

Безвинтовые зажимы, если иное не установлено изготовителем, должны зажимать жесткие и гибкие проводники, указанные в таблице 1.

Присоединение и отсоединение проводников в безвинтовых зажимах должно осуществляться следующим образом:

- в универсальных зажимах с помощью инструмента общего назначения или специального приспособления. выполненного за одно целое с зажимом для его открывания и ввода или вывода проводников:

- в самозажимных зажимах простым введением проводников. При этом для отсоединения проводников потребуется иная операция, чем выдергивание проводника. Применение инструмента общего назначения или специального приспособления, выполненного за одно целое с зажимом, позволит его открыть и способствовать вводу или выводу проводника.

Примеры выводов приведены в приложении D.

Соблюдение требований данного подпункта следует проверять испытаниями по б.2.4.2—8.2.4.4. по применению.

Примечание 2 — В странах Северной Америки (США, Канада) предъявляются особью требования к выводам, пригодным для алюминиевых проводников, и наносится маркировка с указанием возможности использования алюминиевых проводников.

7.1.8.2 Способность к присоединению

Изготовитель должен указать тип (жесткие — одножильные, многожильные или гибкие), минимальное и максимальное поперечные сечения проводников, для которых пригоден данный вывод, и. если требуется, число проводников, одновременно подсоединяемых к выводу.

Максимальное поперечное сечение должно быть не менее указанного в 8.3.3.3 для испытания на превышение температуры, и вывод должен быть пригоден для проводников того же типа (жестких одножильных. или многожильных, или гибких) как минимум на два размера меньше, чем в соответствующей графе таблицы 1.

Примечания

1 Стандарты на аппараты конкретных видов могут допускать применение проводников с поперечным сечением менее минимального.

2 Из-за падения напряжения и по другим соображениям в стандарты на аппараты конкретных видов допускается включать требования о пригодности выводов для проводников большего поперечного сечения, чем установлено для испытания на превышение температуры. Взаимосвязь между поперечными сечениями проводников и номинальными токами может быть указана в стандартах на аппараты конкретных видов.

Стандартные значения поперечного сечения круглых медных проводников (в системах метрической ISO и AWG/kcmil) сведены в таблицу 1. отражающую также приблизительное соотношение между системами мер.

7.1.8.3 Присоединение

Выводы аппарата для присоединения внешних проводников должны быть легко доступны во время монтажа.

Зажимные винты и гайки не должны служить для закрепления каких-либо других деталей, хотя могут удерживать выводы на месте или предотвращать их проворачивание.

7.1.8.4 Идентификация и маркировка выводов

Выводы аппарата следует четко и однозначно идентифицировать согласно IEC 60445 и приложению L настоящего стандарта, если нет иных указаний в стандарте на аппарат конкретного вида.

Выводы, предназначенные исключительно для нулевого рабочего проводника, должны обозначаться буквой N в соответствии с IEC 60445.

Защитный вывод заземления должен идентифицироваться ло 7.1.10.3.

7.1.9 Дополнительные требования к аппаратам с нейтральным полюсом

Если один из полюсов аппарата предназначен исключительно для присоединения нейтрали, его следует четко обозначить буквой N (см. 7.1.8.4).

Коммутируемый нейтральный полюс должен отключать ток не раньше и включать не позже других полюсов.

Если полюс, обладающий соответствующей наибольшей отключающей и включающей способностью (см. 2.5.14 и 2.5.15), используют в качестве нейтрального полюса, тогда все полюса, в том числе нейтральный полюс, могут срабатывать практически одновременно.

Примечание — Нейтральный полюс может быть оснащен максимальным расцепителем тока.

Для аппаратов с условным тепловым током (в оболочке или без оболочки, см. 4.3.2.1 и 4.3.2.2) не выше 63 А значение тока должно быть одинаковым для всех полюсов.

При более высоких значениях условного теплового тока условный тепловой ток нейтрального полюса может отличаться от условного теплового тока других полюсов, но составлять не менее 50 % условного теплового тока или 63 А. выбирают большее значение.

7.1.10 Меры по защитному заземлению

7.1.10.1 Требования к конструкции

Открытые токопроводящие части (например, рама, корпус и стационарные части металлических оболочек), за исключением не представляющих опасности, должны быть электрически связаны между собой и присоединены к защитному выводу заземления для подключения к заземляющему электроду или внешнему защитному проводнику.

Данному требованию соответствуют стандартные конструкционные элементы, обеспечивающие достаточную электрическую непрерывность, это требование действует независимо от того, используется ли аппарат автономно или встраивается в систему.

Примечание — При необходимости требования и испытания могут уточняться в стандарте на аппарат конкретного вида.

Открытые токопроводящие части считают не представляющими опасности, если к ним невозможно прикоснуться на большой поверхности или схватить рукой либо если их размеры невелики (приблизительно 50 х 50 мм) или расположены так. что исключается любой их контакт с частями, находящимися под напряжением.

Примерами открытых токопроводящих частей служат винты, заклепки, фирменные таблички, сердечники трансформаторов, электромагниты коммутационных аппаратов и некоторые части расцепителей. независимо от их размеров.

7.1.10.2 Защитный вывод заземления

Защитный вывод заземления должен быть легко доступным и находиться в таком месте, чтобы при удалении крышки или любой другой съемной части сохранялось соединение аппарата с электродом заземления или защитным проводником.

Защитный вывод заземления должен быть эффективно защищен от коррозии.

Для аппаратов с токопроводящими конструкциями, оболочками и т. л. следует (если требуется) принять меры для обеспечения электрической непрерывности между открытыми токопроводящими частями аппарата и металлическими оболочками соединительных проводников.

Защитный вывод заземления не должен выполнять других функций, если только он не предназначается для присоединения к проводнику PEN (см. 2.1.15. примечание).

В этом случае защитный вывод заземления должен не только соответствовать требованиям, предъявляемым к защитному выводу заземления, но и выполнять функцию вывода нейтрали.

7.1.10.3 Маркировка и идентификация защитного вывода заземления

Защитный вывод заземления должен на протяжении всего срока службы сохранять четкую маркировку.

Идентификация маркировки обеспечивается цветом (желто-зеленым) или обозначением РЕ или PEN (что применимо) no IEC 60445. подпункт 5.3 или графическим символом, наносимым на аппарат.


защитного заземления по IEC 60417-2.


Использованию подлежит графический символ 5019

Примечание — Рекомендованный ранее символ 5017 по IEC 60417-2 должен постепенно замениться указанным выше предпочтительным символом 5019 по IEC 60417-2.

7.1.11 Оболочки аппаратов

Следующие требования относятся только к оболочкам, поставляемым или предназначенным для использования совместно с аппаратом.

7.1.11.1 Конструкция

Оболочка аппарата должна быть сконструирована так. чтобы при ее открывании и удалении других защитных приспособлений (если они предусмотрены) части, к которым требуется доступ для монтажа и обслуживания по инструкциям изготовителя, были легко доступны.

Внутри оболочки должно быть достаточно места для прокладки внешних проводников от их входа в оболочку до выводов, обеспечивающих нужное присоединение.

Неподвижные части металлической оболочки должны быть электрически присоединены к другим открытым токопроводящим частям аппарата и подключены к выводу, обеспечивающему их заземление, или защитному проводнику.

Съемная металлическая часть оболочки аппарата ни в коем случае не должна быть изолирована от части, снабженной выводом заземления, когда съемная часть находится на своем месте.

Съемные части оболочки аппарата должны быть прочно скреплены с неподвижными частями таким приспособлением, чтобы не могли случайно отсоединиться или разболтаться в результате срабатывания аппарата или под воздействием вибрации.

Если оболочка сконструирована так. что крышки можно открыть без помощи инструментов, необходимо принять меры во избежание потери крепежных деталей.

Неотделимая оболочка рассматривается как несъемная часть аппарата.

Если на оболочке монтируются нажимные кнопки, удалить их извне должно быть возможно лишь с помощью специального инструмента.

7.1.11.2 Изоляция

Если во избежание случайного контакта между металлической оболочкой и частями аппарата, находящимися под напряжением, оболочка частично или полностью застилается изнутри изоляционным материалом, этот материал должен быть надежно прикреплен к оболочке.

7.1.12 Степени защиты аппаратов в оболочках

Степени защиты аппаратов в оболочках и соответствующие испытания указаны в приложении С.

7.1.13 Вытягивание, кручение, изгиб стальных труб для проводников

Оболочки аппаратов из полимерных материалов, неотделимые или демонтируемые и снабженные резьбовыми вводами, предназначенными для присоединения жестких стальных труб с резьбой по концам для сверхтяжелого режима применения согласно IEC 60981. должны выдерживать нагрузки при монтаже, а именно: вытягивание, кручение, изгиб.

Соответствие проверяют испытанием по 8.2.7.

7.2 Требования к работоспособности

При отсутствии в стандарте на аппарат конкретного вида других указаний последующие требования относятся к новому аппарату в чистом состоянии.

7.2.1 Рабочие условия

7.2.1.1 Общие положения

Оперирование аппаратом должно осуществляться согласно инструкциям изготовителя или стандарту на аппарат конкретного вида, особенно при ручном управлении с приводом зависимого действия, в том случае, когда включающая и отключающая способность может зависеть от квалификации оператора.

7.2.1.2 Пределы срабатывания аппарата с двигательным приводом

При отсутствии в стандарте на аппарат конкретного вида других указаний электромагнитный и электропневматический аппараты должны замыкаться при любом питающем напряжении цепи управления от 85 до 110 % его номинального значения Us и температуре окружающего воздуха от минус 5 °C до плюс 40 °C.

Эти пределы действительны как для постоянного, так и для переменного тока, по обстоятельствам.

Для пневматических и электропневматических аппаратов при отсутствии других указаний пределы давления воздуха на входе составляют 85 и 110 % номинального давления.

Если указывается диапазон рабочих значений. 85 % должно относиться к нижнему пределу диапазона. 110 % — к верхнему.

Примечание — Для аппаратов с защелкой пределы срабатъвания подлежат согласованию между изготовителем и потребителем.

Для электромагнитных и электропневматических аппаратов напряжение отпадания должно быть не выше 75 % номинального питающего напряжения цепи управления Us и не ниже 20 % Us на переменном токе при номинальной частоте или 10 % Us — на постоянном токе.

Пределы отпадания и полного размыкания аппарата с электронно-управляемым электромагнитом составляют:

- для постоянного тока от 75 до 10 % номинального напряжения питания Us его цепи управления;

- для переменного тока от 75 до 20 % номинального напряжения питания Us его цепи управления или от 75 до 10 % номинального напряжения питания Us его цепи управления, если так установлено изготовителем.

Пневматические и электропневматичесхие аппараты при отсутствии других указаний должны размыкаться при давлении от 75 до 10 % номинального давления.

Если указывается диапазон рабочих значений, верхнему его пределу может соответствовать значение 20 или 10 %. по обстоятельствам, нижнему — 75 %.

Для катушки предельное значение отпадания действительно, если сопротивление цепи катушки равно достигнутому при минус 5 °C. что можно проверить с помощью расчетов, основанных на значениях. определенных при нормальной температуре окружающего воздуха.

В отдельных назначениях должно быть указано время отпадания. В этом случае его измеряют при испытании по данному подпункту.

7.2.1.3 Пределы срабатывания минимальных реле и расцепителей напряжения

a) Рабочее напряжение

Минимальное реле или минимальный расцепитель напряжения в комбинации с коммутационным аппаратом должны срабатывать на размыкание аппарата даже на медленно падающем напряжении от 70 до 35 % его номинального напряжения.

Примечание — Особый вариант минимального расцепителя напряжения представляет собой расцепитель нулевого напряжения с рабочим напряжением от 35 до 10 % номинального питающего напряжения.

Минимальное реле или минимальный расцепитель напряжения должны предотвращать замыкание аппарата при питающем напряжении ниже 35 % номинального напряжения реле или расцепителя и допускать замыкание аппарата при питающем напряжении не ниже 85 % номинального. При отсутствии других указаний в стандарте на аппарат конкретного вида верхний предел питающего напряжения должен составлять 110 % номинального значения.

Вышеприведенные значения действительны для постоянного тока и переменного тока при номинальной частоте.

b) Рабочее время

Для минимального реле или расцепителя напряжения с выдержкой времени выдержку времени следует измерять с момента достижения напряжением рабочего значения до момента воздействия реле или расцепителя на расцепляющее устройство аппарата.

7.2.1.4 Пределы срабатывания независимых расцепителей

Независимый размыкающий расцепитель должен вызывать расцепление в любых рабочих условиях. если питающее напряжение независимого расцепителя, измеренное во время расцепления, остается в пределах от 70 до 110 % номинального питающего напряжения цепи управления и при номинальной частоте, если ток переменный.

7.2.1.5 Пределы срабатывания реле и расцепителей, оперируемых током

Пределы срабатывания реле и расцепителей, оперируемых током, должны указываться в стандарте на аппарат конкретного вида.

Примечание — Термин «реле и расцепители, оперируемые током» относится к максимальным реле или расцепителям тока, репе или расцепителям перегрузки, репе или расцепителям обратного тока и т. п.

7.2.2 Превышение температуры

Превышение температуры частей аппарата, которое определяют в ходе испытания по 8.3.3.3. не должно превышать значений, содержащихся в 8.3.3.3.

Примечания

1 Превышение температуры в нормальных условиях эксплуатации может отличаться от ислытагетъных значений в зависимости от условий монтажа и размеров присоединенных проводников.

2 Пределы превышения температуры, указанные в таблицах 2 и 3. относятся к новым аппаратам. В стандартах на аппараты конкретного вида могут быть указаны другие значения в зависимости от условий испытания, а также для малогабаритных аппаратов, но эти значения не должны превышать приведенных 8 вышеуказанных таблицах значений более чем на 10 К.

7.2.2.1 Выводы

Превышение температуры выводов аппаратов не должно выходить за пределы, указанные в таблице 2.

7.2.2.2 Доступные части

Превышение температуры доступных частей аппаратов не должно выходить за пределы значений. указанных в таблице 3.

Примечание — Пределы превышения температуры других частей аппаратов приведены в 7.2.2.8.

7.2.2.3 Температура окружающего воздуха

Пределы превышения температуры аппаратов приведены в таблицах 2 и 3 для температуры окружающего воздуха, указанной в 6.1.1.

7.2.2.4 Главная цепь

Главная цель аппарата должна быть способна проводить условный тепловой ток аппарата так. чтобы превышение температуры не выходило за пределы, указанные в таблицах 2 и 3. при испытаниях согласно 8.3.3.3.4.

7.2.2.5 Цепи управления

Цепи управления аппарата, в т. ч. аппараты для цепей управления, предназначенные для замыкания и размыкания аппарата, должны обеспечивать работу в нормальных режимах по 4.3.4. При этом превышения температуры, определенные при испытании no 8.3.3.3.5, не должны превышать значений, указанных в таблицах 2 и 3.

Цифровые вводы и/или цифровые выходы, содержащиеся в коммутационной аппаратуре распределения и управления, должны быть совместимы с программируемыми логическими контроллерами (ПЛК), они рассматриваются в приложении S.

7.2.2.6 Обмотки катушек и электромагнитов

При прохождении тока по главной цепи обмотки катушек и электромагнитов должны выдерживать их номинальное напряжение так. чтобы превышение температуры не выходило за пределы, установленные в 7.2.2.8 при испытаниях по 8.3.3.3.6.

Примечание — Данный подпункт не распространяется на катушки, оперируемые импульсным током, рабочие условия для которых определяются изготовителем.

7.2.2.7 Вспомогательные цепи

Вспомогательные цепи аппарата, в том числе блок-контакты, должны быть способны проводить условный тепловой ток так. чтобы превышение температуры вспомогательных цепей не выходило за пределы, установленные в таблицах 2 и 3. при испытаниях по 8.3.3.3.7.

Примечание — Если вспомогательная цепь составляет неотъемлемую часть аппарата, достаточно подвергнуть ее испытаниям одновременно с основным аппаратом. но на фактическом эксплуатационном токе.

7.2.2.8 Прочие части

Превышения температуры во время испытания не должны вызывать повреждений токопроводящих или соседних частей аппарата, в частности, для изоляционных частей изготовитель соответствие данному требованию должен доказать, сославшись на показатель температуры изоляции (определенный. например, методами по IEC 80216). или на соответствие IEC 60085.

7.2.3 Электроизоляционные свойства

Требования к электроизоляционным свойствам основаны на принципах электробеэопасности по IEC 60664-1 и IEC 61140.

Для уменьшения воздушных зазоров и расстояний утечки в результате применения покрытий см. IEC 60664-3 и для воздушных зазоров и расстояний утечки, равных или менее 2 мм. см. (ЕС 60664-5. 48

a) Нижеприведенные требования обеспечиваются согласованием изоляции оборудования с условиями внутри установки.

b) Аппарат должен выдерживать испытания на:

- номинальное импульсное выдерживаемое напряжение (см. 4.3.1.3) в соответствии с категориями перенапряжения, приведенными в приложении Н;

- импульсное выдерживаемое напряжение на разомкнутых контактах аппаратов, пригодных для разьединения, в соответствии с таблицей 14:

- выдерживаемое напряжение промышленной частоты.

Примечание — Соотношение между номинальным напряжением системы питания и номинальным импульсным выдерживаемым напряжением аппарата приведено в приложении Н.

Номинальное импульсное выдерживаемое напряжение для данного номинального рабочего напряжения (см. примечания 1 и 2 к 4.3.1.1) не должно быть меньше того, что в приложении Н соответствует номинальному напряжению системы питания цепи в точке, где должен использоваться аппарат, и категории перенапряжения.

c) Требования данного пункта следует проверить испытаниями no 8.3.3.4.

7.2.3.1 Импульсное выдерживаемое напряжение:

1) главной цепи:

a) зазоры между частями, находящимися под напряжением, и частями, предназначенными для заземления, а также между полюсами должны выдерживать испытательное напряжение, указанное в таблице 12. соответственно номинальному импульсному выдерживаемому напряжению:

b) зазоры между разомкнутыми контактами должны выдерживать:

- импульсное напряжение, установленное (если требуется) в стандарте на аппарат конкретного вида:

- в аппарате, характеризуемом как пригодный для разьединения, испытательное напряжение. указанное в таблице 14, соответственно номинальному импульсному выдерживаемому напряжению.

Примечание — Твердую изоляцию аппаратов с воздушными зазорами следует подвергнуть испытанию импульсным напряжением согласно перечислениям а) и/ипи Ь). что применимо;

2) вспомогательных целей и цепей управления:

a) вспомогательные цели и цепи управления, оперируемые приводом от главной цепи при номинальном рабочем напряжении, должны соответствовать требованиям пункта 7.2.3.1. перечисление 1) а) [см. также примечание к 7.2.3.1. перечисление 1)]:

b) вспомогательные цепи и цепи управления, не оперируемые приводом от главной цепи, могут выдерживать перенапряжения, отличные от перенапряжений главной цепи, воздушные зазоры и твердая изоляция таких целей переменного или постоянного тока должны выдерживать напряжение согласно приложению Н.

7.2.3.2 Выдерживаемое напряжение промышленной частоты главной цепи, вспомогательных цепей и цепей управления

a) Испытание напряжением промышленной частоты проводят при:

« испытаниях на электрическую прочность изоляции в качестве типовых для проверки твердой изоляции:

- проверке электрической прочности изоляции в качестве критерия отбраковки после типовых коммутационных испытаний или испытаний на короткое замыкание:

- контрольных испытаниях.

b) Типовые испытания электроизоляционных свойств.

Испытания электроизоляционных свойств в качестве типовых испытаний следует проводить в соответствии с 8.3.3.4.

Для аппарата, пригодного для разъединения, максимальный ток утечки должен соответствовать 7.2.7. испытания следует проводить в соответствии с 8.3.3.4.

c) Проверка электрической прочности изоляции после коммутационных испытаний или испытаний на короткое замыкание.

Проверку электрической прочности изоляции после коммутационных испытаний или испытаний на короткое замыкание в качестве критерия для отбраковки всегда проводят при напряжении промышленной частоты согласно 8.3.3.4.1. перечисление 4).

Для аппарата, пригодного для разъединения, максимальный ток утечки должен соответствовать 7.2.7. испытания проводят в соответствии с 8.3.3.4. ток утечки не должен превышать значений, указанных в стандарте на аппарат конкретного вида.

d) Свободное.

e) Проверка электрической прочности изоляции во время контрольных испытаний.

Испытания на обнаружение дефектов в материалах и при изготовлении изделий проводят при напряжении промышленной частоты согласно 8.3.3.4.2. перечисление 2).

7.2.3.3 Воздушные зазоры

Размеры воздушных зазоров должны быть достаточными для того, чтобы аппарат мог противостоять номинальному импульсному выдерживаемому напряжению согласно 7.2.3.1.

Размеры воздушных зазоров должны быть равны или больше указанных в таблице 13. случай В (для однородного поля см. 2.5.62), и проверяться посредством выборочного испытания по д.3.3.4.3. Данное испытание не требуется, если воздушные зазоры, соотнесенные с номинальным импульсным выдерживаемым напряжением и степенью загрязнения, больше указанных в таблице 13 (случай А для неоднородного поля).

Способ измерения воздушных зазоров приведен в приложении G.

7.2.3.4 Расстояния утечки

a) Расчет размеров

При степенях загрязнения 1 и 2 расстояния утечки должны быть не менее соответствующих воздушных зазоров, выбранных по 7.2.3.3. При степенях загрязнения 3 и 4 расстояния утечки должны быть не менее воздушных зазоров в случае А (см. таблицу 13). для того чтобы снизить риск пробивных разрядов вследствие перенапряжений, даже если эти воздушные зазоры меньше допускаемых для случая А в соответствии с 7.2.3.3.

Способ измерения расстояний утечки приведен в приложении G.

Расстояния утечки должны соответствовать степени загрязнения согласно 6.1.3.2 (или стандарту на аппарат конкретного вида) и группе материалов при номинальном напряжении изоляции (или эксплуатационном напряжении), указанном в таблице 15.

Группы материалов определяют по диапазону значений показателя относительной стойкости против токов утечки (СИТ) (см. 2.5.65):

• группа I — 600 5 СИТ;

• группа II — 400 s СИТ < 600:

• группа Ша — 175 s СИТ < 400:

• группа ШЬ — 100 S СИТ < 175.

Примечания

1 Приведенные выше значения СИТ получены по IEC 60112. метод А. для применяемого изоляционного материала.

2 Для неорганических изоляционных материалов (стекло или керамика), на которых токи утечки не оставляют следов, расстояния утечки не должны быть более соответствующих воздушных зазоров. Однако следует учитывать опасность пробивных разрядов.

b) Использование ребер

Расстояние утечки можно уменьшить до 0.8 соответствующего значения по таблице 15. используя ребра высотой не менее 2 мм. независимо от числа ребер.

Минимальное основание ребра определяется его механическими параметрами (см. приложение G. раздел G.2).

c) Специальные области применения

В аппаратах для некоторых областей применения, для которых следует учитывать серьезные последствия повреждения изоляции, следует использовать один или несхолько влияющих факторов в соответствии с таблицей 15 (расстояния утечки, изоляционные материалы, загрязнения микросреды) так. чтобы достичь более высокого напряжения изоляции, чем номинальное напряжение изоляции аппарата, указанное в таблице 15.

7.2.3.5 Твердая изоляция

Твердую изоляцию следует проверять либо испытаниями напряжением промышленной частоты согласно в.3.3.4.1. перечисление 3). либо (для оборудования для постоянного тока) испытаниями напряжением постоянного тока.

Примечание — Болев подробную информацию по конструкции твердой изоляции см. е 5.3.1 IEC 60664-1:2007.

7.2.3.6 Расстояние между отдельными цепями

Для определения размеров воздушных зазоров, расстояний утечки и твердой изоляции между отдельными цепями следует использовать наибольшие параметры напряжения (номинальное импульсное выдерживаемое напряжение для воздушных зазоров и связанной с ними твердой изоляции и номинальное напряжение изоляции или эксплуатационное напряжение — для расстояний утечки).

7.2.3.7 Требования к аппаратам с защитным разделением

Требования к аппаратам с защитным разделением приведены в приложении N.

7.2.4 Способность включать, проводить и отключать ток при нулевой, нормальной нагрузке и перегрузке

7.2.4.1 Включающая и отключающая способности

Аппарат должен включать и отключать токи нагрузки и перегрузки без отказа в условиях, указанных в стандарте на аппарат конкретного вида для требуемой категории применения и числа срабатываний. указанного в стандарте на аппарат конкретного вида (см. также общие условия испытания по 8.3.3.S).

7.2.4.2 Работоспособность

Испытания на работоспособность аппарата предназначены для проверки его способности включать. проводить и отключать без отказа токи, проходящие по его главной цепи в условиях, соответствующих установленной категории применения, где применимо.

Особые требования и условия испытания должны быть оговорены в стандарте на аппарат конкретного вида и могут касаться работоспособности аппарата:

- при отсутствии нагрузки, испытываемой в условиях, когда в цепь управления ток поступает, а в главную цепь — не поступает, для доказательства того, что аппарат соответствует требованиям к срабатыванию при верхнем и нижнем предельных питающих напряжениях и/или при давлении или напряжении и давлении, установленных для цепи управления во время замыкания и размыкания;

- при прохождении тока, если аппарат должен включать и отключать установленный ток. где нужно. соответственно его категории применения при числе срабатываний, указанном в стандарте на аппарат конкретного вида.

Проверку на работоспособность в обесточенном состоянии и при прохождении тока можно совмещать в одном цикле испытании, если это предусмотрено в стандарте на аппарат конкретного вида.

7.2.4.3 Износостойкость

Примечание — Термин «износостойкость» («durability») выбран для обеспечения ожидаемого числа циклов оперирования, которые выдерживает аппарат до ремонта или замены частей. Тахже широко используемый в значении «износостойкость» термин «endurance» обычно относится и к понятию «работоспособность» по 7.2 4.2. поэтому было решено не употреблять его в настоящем стандарте во избежание смешивания двух понятий.

7.2.4.3.1 Механическая износостойкость

По стойкости к механическому износу аппарат характеризуется указанным в стандарте на аппарат конкретного вида числом циклов оперирования без нагрузки (т. е. при обесточенных главных контактах), которые он должен осуществить, прежде чем возникнет необходимость обслуживания или замены каких-либо механических частей, однако допускается нормальное (по инструкциям изготовителя) обслуживание аппаратов (в случае, если это предусмотрено).

Каждый цикл оперирования состоит из одного замыкания контактов с последующим размыканием.

Для проведения испытания аппарат монтируют по инструкции изготовителя.

Предпочтительное число циклов оперирования аппарата в обесточенном состоянии должно устанавливаться в стандарте на аппарат конкретного вида.

7.2.4.3.2 Коммутационная износостойкость

По стойкости к коммутационному износу контакты аппарата характеризуются числом циклов оперирования при прохождении тока в соответствии с условиями эксплуатации, указанными в стандарте на аппарат конкретного вида, которые аппарат должен осуществить без ремонта или замены частей.

Предпочтительное число циклов оперирования под нагрузкой должно быть указано в стандарте на аппарат конкретного вида.

7.2.5 Способность включать, проводить и отключать токи короткого замыкания

Аппараты в соответствии с конструкцией в условиях, установленных в стандарте на аппарат конкретного вида, должны выдерживать термические, динамические и электрические нагрузки, обусловленные токами короткого замыкания. В частности, аппараты должны соответствовать требованиям 8.3.4.1.8.

Токи короткого замыканий могут возникать при:

• включении тока;

• прохождении тока е замкнутом положении контактов аппарата;

• отключении тока.

Способность аппарата включать, проводить и отключать токи короткого замыкания определяется одним или несколькими следующими номинальными параметрами:

• номинальной наибольшей включающей способностью (см. 4.3.6.2);

- номинальной наибольшей отключающей способностью (см. 4.3.6.3);

- номинальным кратковременно допустимым током (см. 4.3.6.1}.

Для аппаратов, координируемых с устройствами для защиты от коротких замыканий (УЗКЗ). — следующими параметрами:

a) номинальным условным током короткого замыкания (см. 4.3.6.4);

b) другими типами координации, указанными только в стандарте на аппарат конкретного вида.

Для номинальных и предельных значений по вышеуказанным перечислениям а) и Ь) изготовитель

должен указать тип и характеристики (например, номинальный ток. отключающую способность, ток отсечки, fit) УЗКЗ. необходимых для защиты аппаратов.

7.2.6 Коммутационные перенапряжения

В стандарте на аппарат конкретного вида могут быть установлены испытания на коммутационные перенапряжения (при необходимости).

В этом случае методика испытания и требования должны быть определены в стандарте на аппарат конкретного вида.

7.2.7 Токи утечки аппаратов, пригодных для разъединения

Для аппарата, пригодного для разьединения, с номинальным рабочим напряжением свыше 50 В ток утечки измеряют на каждом полюсе при разомкнутых контактах.

Значение тока утечки при ислытательном напряжении, равном 1,1 номинального рабочего напряжения. не должно превышать:

- 0.5 мА на полюс — для нового аппарата;

- 2 мА на полюс — для аппарата, уже подвергавшегося операциям включения и отключения в соответствии с требованиями к испытанию, указанными в стандарте на аппарат конкретного вида.

Ток утечки 6 мА при 1.1 номинального рабочего напряжения является предельным значением для аппарата, пригодного для разьединения, причем это значение не должно быть превышено. Испытания на проверку соответствия данному требованию могут содержаться в стандарте на аппарат конкретного вида.

7.2.8 Полное сопротивление полюса

Если указано полное сопротивление полюса, его проверяют по 8.3.3.6.

7.3 Электромагнитная совместимость (ЭМС)

7.3.1 Общие положения

Для аппаратов, подпадающих под область применения настоящего стандарта, рассматривают две группы условий окружающей среды:

a) группа А;

b) группа В.

Группа А условий окружающей среды касается низковольтных некоммунальных или промышленных сетей/электроустановок, в том числе источников сильных электромагнитных помех.

Примечание 1 — ГруппаАуслоеийокружающейсредысоотеетстеуеталпарагурекпассаАпоСИСПРИ.

Группа В условий окружающей среды касается низковольтных коммунальных сетей, например бытовых, коммерческих и осветительных промышленных сетей/электроустановок. Источники сильных электромагнитных помех, например аппараты дуговой сварки, к данной группе не относятся.

Примечание 2 — Группа В условий окружающей среды соответствует аппаратуре класса В по S1SPR 11.

В настоящем стандарте словосочетание «электронная цель» исключает цепи, в которых все элементы пассивны (в том числе диоды, резисторы, варисторы, конденсаторы, подавители импульсов, индукторы).

7.3.2 Устойчивость к электромагнитным помехам

7.3.2.1 Аппараты, не содержащие электронные цепи

Аппараты, не содержащие электронные цепи, не чувствительны к электромагнитным помехам в нормальных условиях эксплуатации и поэтому их не подвергают испытаниям на устойчивость к электромагнитным помехам.

7.3.2.2 Аппараты, содержащие электронные цели

Аппараты, содержащие электронные цепи, должны обладать достаточной устойчивостью к электромагнитным помехам.

Испытание на соответствие вышеуказанному требованию — по 8.4.

Специфический критерий работоспособности, основанный на критериях соответствия, приведенных в таблице 24. должен содержаться в стандарте на аппарат конкретного вида.

7.3.3 Помехоэмиссия

7.3.3.1 Аппараты, не содержащие электронные цепи

Считается, что требования к излучению электромагнитных помех в аппаратах, не содержащих электронные цепи, соблюдены, и испытания не проводят.

Примечание — В аппаратах, не содержащих электронные цепи, электромагнитные помехи могут излучаться только ео время случайных коммутаций. Длительность электромагнитных помех составляет менее 200 мс noCJSPR22.

Частоту, уровень и последовательность таких излучений считают принадлежностью нормальной электромагнитной среды низковольтных электроустановок.

7.3.3.2 Аппараты, содержащие электронные цели

7.3.3.2.1 Пределы высокочастотных излучаемых помех

Длительные высокочастотные излучения (ев. 9 кГц) от аппаратов, содержащих электронные цепи, не должны выходить за пределы, указанные в стандарте на аппарат конкретного вида, основанные на CISPR 11 для условий окружающей среды групп А и В.

Примечание — Единичные помехи длительностью не более 200 мс ео внимание не принимают.

7.3.3.2.2 Пределы низкочастотных излучаемых помех

К аппаратам, излучающим низкочастотные гармоники, если необходимо, применяют требования IEC 61000-3-2.

К аппаратам, вызывающим низкочастотные колебания напряжения, если необходимо, применяют требования IEC 61000-3-3.

8 Испытания

8.1 Виды испытаний

8.1.1 Общие положения

Для подтверждения соответствия аппаратов требованиям настоящего стандарта (если применимы) и стандарта на аппарат конкретного вида проводят следующие испытания:

• типовые (см. 2.6.1) на характерных образцах каждого конкретного аппарата;

• контрольные (см. 2.6.2). которым подвергают каждый аппарат, изготовленный в соответствии с требованиями настоящего стандарта (если применим) и стандарта на аппарат конкретного вида.

• выборочные (см. 2.6.3). выполняемые в соответствии с требованиями стандарта на аппарат конкретного вида. Выборочные испытания для проверки воздушных зазоров см. 6.3.3.4.3.

Данные испытания могут состоять из циклов согласно требованиям стандарта на аппарат конкретного вида.

Если циклы испытаний указаны в стандарте на аппарат конкретного вида, то испытания, на результат которых не повлияли предыдущие испытания и которые не имеют значения для последующих испытаний данного цикла, могут быть опущены в этом цикле испытаний и по согласованию с изготовителем проведены отдельно на новых образцах.

В стандарте на аппарат конкретного вида должны быть указаны такие испытания (где применимо).

Эти испытания должен проводить изготовитель на своем производстве или в любой лаборатории по его усмотрению.

Если требуется в стандарте на аппарат конкретного вида и по соглашению между изготовителем и потребителем, могут проводиться также специальные испытания (см. 2.6.4).

8.1.2 Типовые испытания

Типовые испытания проводят для проверки соответствия конструкции конкретного аппарата требованиям настоящего стандарта (если применим) и стандарта на аппарат конкретного вида.

Типовые испытания могут включать в себя (по необходимости) проверку:

• выполнения требований к конструкции;

- превышения температуры частей аппарата;

■ электроизоляционных свойств (см. 8.3.3.4.1, если применимо);

• включающей и отключающей способностей;

• наибольшей включающей и отключающей способностей аппарата;

. пределов работоспособности аппарата;

• работоспособности;

- степени защиты аппаратов в оболочках;

• соответствия требованиям ЭМС.

Примечание — Данное перечисление не является исчерпывающим.

Типовые испытания, которым следует подвергать аппарат, результаты и (если предусматриваются) циклы испытаний и число образцов должны быть указаны в стандарте на аппарат конкретного вида.

8.1.3 Контрольные испытания

Контрольные испытания проводят для обнаружения дефектов материалов, изготовления, а также для подтверждения правильного функционирования аппарата. Контрольным испытаниям следует подвергать каждый отдельный аппарат.

К контрольным испытаниям могут относиться:

a) функциональные испытания:

b) испытания электроизоляционных свойств материалов.

Методы контрольных испытаний и условия их проведения должны уточняться в стандарте на аппарат конкретного вида.

8.1.4 Выборочные испытания

Если технико-статистический анализ показывает, что контрольные испытания (каждого аппарата) не требуются, их можно заменить выборочными испытаниями (если это оговаривается в стандарте на аппарат конкретного вида).

К выборочным испытаниям могут относиться:

a) функциональные испытания:

b) испытания электроизоляционных свойств.

Выборочные испытания могут также проводиться для проверки специфических свойств или характеристик аппарата по инициативе самого изготовителя или по соглашению между изготовителем и потребителем.

8.2 Соответствие требованиям к конструкции

Проверке на соответствие требованиям к конструкции аппаратов, изложенным в 7.1. подлежат, например.

- материалы;

- аппараты;

- степени защиты оболочек:

- механические и электрические свойства выводов;

- органы управления;

- индикаторы положения (см. 2.3.18).

8.2.1 Материалы

8.2.1.1 Испытание на стойкость к аномальному нагреву и огню

8.2.1.1.1 Испытание (аппарата) раскаленной проволокой

Испытание раскаленной проволокой следует проводить no IEC 60695-2*10 и IEC 60695-2-11 согласно условиям, указанным в 7.1.2.2.

Для данного испытания защитный проводник токоведущей частью не считают.

Примечание — Если данное испытание следует проводить в нескольких местах одного и того же образца. необходимо следить за тем. чтобы повреждения, вызванные предыдущими испытаниями, не повлияли на результаты дальнейших испытаний.

8.2.1.1.2 Испытания (материалов) на воспламеняемость, испытания раскаленной проволокой и горением дуги

Образцы материалов аппарата подвергают следующим испытаниям:

a) испытанию на воспламеняемость согласно IEC 60695-11-10;

b) испытанию раскаленной проволокой (ИРП) согласно приложению М;

c) испытанию горением дуги (ГД) согласно приложению М.

Испытание по перечислению с) необходимо только, если образец материала расположен на расстоянии 13 мм от зоны воздействия дуги или частей аппарата под напряжением, находящихся в зоне ослабления электрических соединений. Образцы материала аппарата, расположенные в 13 мм от зоны воздействия дуги, исключают из данного испытания, если аппарат подвергают коммутационным испы-1аниям.

8.2.2 Аппарат

Охватывается требованиями по подпунктам пункта 8.2.

8.2.3 Оболочки аппарата

Степени защиты аппаратов в оболочках — по приложению С.

8.2.4 Механические и электрические свойства выводов аппарата

Настоящий подпункт не относится к алюминиевым выводам и выводам, предназначенным для присоединения алюминиевых проводников.

8.2.4.1 Общие условия испытаний

При отсутствии других указаний изготовителя каждое испытание следует проводить на чистых и новых выводах.

Если для испытаний используют круглые медные проводники, они должны выполняться из меди no IEC 60228.

Если для испытаний используют плоские медные проводники, они должны иметь следующие характеристики:

- чистота — не менее 99.5 %;

- предельная прочность на растяжение — 200—280 Н/мм2;

• твердость по Виккерсу — 40—65 HV.

8.2.4.2 Испытание выводов аппарата на механическую прочность

Для испытаний используют проводники соответствующего типа с максимальным поперечным сечением.

Безвинтовые зажимы согласно 7.1.8.1 испытывают с проводниками максимального сечения.

Проводник следует подсоединять к выводу и отсоединять пять раз.

Усилие затягивания резьбовых выводов должно соответствовать таблице 4 или составлять 110% крутящего момента, указанного изготовителем (выбирают большее).

Испытание следует проводить с двумя раздельными зажимами.

Если винт имеет шестигранную головку с насечкой под отвертку, а значения в графах II и III различны. испытание проводят дважды: первый раз к шестигранной головке прилагают крутящий момент в соответствии с графой III. затем на другом комплекте образцов — по графе II с применением отвертки.

Если значения в графах II и III одинаковы, проводят только испытание отверткой.

Каждый раз. когда винт или гайка откручивается, для испытания на затягивание следует использовать новый проводник.

Во время испытания зажимы и выводы не должны ослабляться, не должно быть повреждений, например поломки винта, повреждения резьбы или насечки на головке винта, деформации шайбы или скобы, что препятствовало бы дальнейшему использованию резьбовых соединений выводов.

8.2.4.3 Испытание на повреждение и случайное ослабление проводников (на изгиб)

Данному испытанию подвергают выводы для присоединения неподготовленных круглых медных

проводников, число, поперечное сечение и тип которых (гибкие и/или жесткие, многожильные и/или одножильные) указывает изготовитель.

Примечание — Соответствующее испытание плоских медных проводников допускается проводить по соглашению между изготовителем и потребителем.

Испытанию на двух новых образцах аппарата подвергают:

a) максимальное число проводников минимального поперечного сечения, присоединяемого к выводу;

b) максимальное число проводников максимального поперечного сечения, присоединяемого к выводу;

c) максимальное число проводников минимального и максимального поперечных сечений, присоединяемых к выводу.

Выводы, предназначенные для присоединения гибких или жестких (одножильных и/или многожильных) проводников, следует испытывать с проводниками каждого типа на различных комплектах образцов аппарата.

Выводы, предназначенные для присоединения и гибких, и жестких (одножильных и/или многожильных) проводников одновременно, следует испытывать в соответствии с перечислением с).

Для испытания выводов следует использовать испытательное устройство, представленное на рисунке 1. К выводу аппарата следует присоединить установленное число проводников. Длина испытуемых проводников должна на 75 мм превышать высоту Н (значения указаны в таблице 5). Зажимные винты следует затягивать с приложением крутящего момента по таблице 4 или инструкции изготовителя.

Испытуемый образец должен быть закреплен в соответствии с рисунком 1.

Каждый проводник подвергают круговому движению следующим образом.

Конец испытуемого проводника пропускают сквозь соответствующего размера гильзу в пластине, расположенной ниже вывода аппарата на высоте Н в соответствии с таблицей 5. Прочие проводники следует отогнуть, чтобы они не влияли на результаты испытания. Гильзу вставляют в горизонтальную пластину так. чтобы проводник проходил через нее по ее центру. Гильзу смещают так. чтобы она описывала круг диаметром 75 мм вокруг своей оси в горизонтальной плоскости со скоростью (10 ± 2) об/мин. Расстояние между зажимным концом вывода и верхним краем гильзы не должно отличаться от значения Н по таблице 5 более чем на 13 мм. Во избежание застревания, скручивания или проворачивания изолированного проводника гильзу следует смазывать. К концу проводника подвешивают груз, создающий тянущее усилие, указанное в таблице 5. В течение испытания следует совершить 135 непрерывных вращений.

При испытании проводник не должен выскальзывать из вывода, а также ломаться возле зажима.

Непосредственно после испытания на изгиб каждый испытуемый проводник должен подвергаться в испытательном устройстве испытанию по 8.2.4.4 (на вытягивание).

5.2.4.4 Испытание на вытягивание

8.2.4.4.1 Круглые медные проводники

После испытания no 8.2.4.3 к испытанному проводнику аппарата прикладывают тянущее усилие по таблице 5.

Перед этим испытанием зажимные винты подтягивать не допускается.

Тянущее усилие прилагают без рывков в течение 1 мин в направлении оси проводника.

Во время испытания проводник не должен выскальзывать из вывода, а также ломаться возле зажима.

8.2.4.4.2 Плоские медные проводники

Проводник нужной длины закрепляют в выводе аппарата и в течение 1 мин без рывков прилагают тянущее усилие по таблице 6 в направлении, противоположном тому, в котором вставляли проводник.

Во время испытания проводник не должен выскальзывать из вывода, а также ломаться возле зажима.

8.2.4.5 Испытание на возможность введения в зажим неподготовленных круглых медных проводников с максимальным поперечным сечением

8.2.4.5.1 Методика испытания

Испытание проводят с применением калибров формы А или В в соответствии с таблицей 7. Рабочий элемент калибра должен проникать в отверстие вывода аппарата псд собственным весом этого калибра на полную глубину вывода (см. также примечание к таблице 7).

Альтернативно испытание можно провести введением проводника наибольшего сечения и типа из рекомендованных изготовителем, диаметр которого соответствует теоретическому диаметру по таблице 7а. с конца которого предварительно сняли изоляцию и придали ему определенную форму. Зачищенный конец проводника должен полностью войти в отверстие зажима без применения чрезмерного усилия.

8.2.4.5.2 Конструкция калибра

Конструкция калибра показана на рисунке 2.

Размеры а и b калибра и предельные допустимые отклонения от размеров приведены в таблице 7. Рабочий элемент калибра следует изготавливать из инструментальной стали.

8.2.4.6 Испытание на возможность вставлять в зажим плоский проводник прямоугольного сечения (в стадии изучения)

8.2.4.7 Электрическая износостойкость беэеинтоеых зажимов

По IEC 80999-1 (подраздел 9.8) и IEC 60999-2 (подраздел 9.8).

Примечание 1 — Термины «наименьшая площадь поперечного сечения» и «наибольшая площадь поперечного сечения» по серии IEC 60999 соответствуют терминам «минимальное поперечное сечение» (2.3.34) и «максимальное поперечное сечение» (2.3.35). принятым в настоящем стандарте.

Примечание 2 — Для максимального поперечного сечения ислыгательмый ток, обычно прикладываемый к аппарату. или 1^. Для минимального поперечного сечения — ток по таблицам 4 и 5 IEC 60947-7-1:2009.

Подробные требования к испытаниям могут содержать стандарты на аппараты конкретного вида.

Примечание 3 — Стандарты на аппараты конкретного вида должны рассмотреть целесообразность подробных требований к испытаниям.

8.2.4.8 Испытание безвинтовых зажимов на механическую износостойкость

По 9.10 IEC 60999-1 и 9.10 IEC 60999-2.

Примечание 1 — Термины «наименьшая площадь поперечного сечения» и «наибольшая площадь поперечного сечения» по серии IEC 60999 соответствуют терминам «минимальное поперечное сечение» (см. 2.3.34) и «максимальное поперечное сечение» (см. 2.3.35). принятым а настоящем стандарте.

Примечание 2 — Для максимального поперечного сечения испытательный ток. обычно прикладываемый к аппарату. / или 1^. Для минимального поперечного сечения — ток по IEC 60947-7-1:2009 (таблицы 4 и 5).

Подробные требования к испытаниям могут содержать стандарты на аппараты конкретного вида.

Примечание 3 — Стандарты на аппараты конкретного вида должны рассмотреть целесообразность подробных требований к испытаниям.

8.2.5 Проверка эффективности указателя положения главных контактов аппарата, пригодного для разъединения

Оценкой эффективности указателя положения главных контактов в соответствии с требованиями 7.1.7 является правильное выполнение своих функций всеми средствами индикации положения контактов после типовых испытаний на работоспособность и специальных испытаний на температурный износ (если проводят).

8.2.5.1 Состояние аппарата, предназначенного для испытаний

Состояние аппарата для всех испытаний должно быть указано в стандарте на аппарат конкретного вида.

8.2.5.2 Методика испытания

8.2.5.2.1 Ручное управление аппаратом при наличии привода зависимого и независимого действия

В первую очередь определяют нормальное управляющее усилие F. прикладываемое к концу органа управления, необходимое для перевода аппарата в разомкнутое положение контактов. Измеренное усилие должно быть равно среднему значению максимального усилия, полученного в результате трех последовательных операций на новом аппарате в чистом состоянии. Затем это усилие F применяют для установления испытательного усилия по таблице 17.

При замкнутом положении контактов аппарата подвижный контакт полюса, для которого выбраны наиболее жесткие условия испытания, должен быть зафиксирован вместе с неподвижным контактом, например приварен к нему.

Орган управления аппаратом подвергают воздействию испытательным усилием 3F. которое должно быть не менее минимального и не более максимального значений, указанных в таблице 17. в зависимости от типа органа управления аппаратом.

Если аппарат имеет несколько контактных систем, соединенных последовательно, все эти системы должны удерживаться в замкнутом положении.

В случае контактной системы с многократным разрывом наименьшее число концов параллельных контактов должно быть сблокировано вместе для необходимости удержания контактной системы в замкнутом положении, чтобы позволить испытательному усилию быть приложенным без размыкания контактов.

Способ удержания контактов в замкнутом положении и их число указывает изготовитель.

Число контактов и метод указывают в протоколе испытаний.

Испытательное усилие следует прикладывать равномерно на конце органа управления аппаратом в течение 10 с в направлении размыкания контактов.

Направление приложения испытательного усилия по отношению к органу управления, как показано на рисунке 16. должно сохраняться на протяжении испытания.

Проверку проводят no 8.2.5.3.1.

8.2.5.2.2 Двигательное управление аппаратом при наличии привода зависимого действия

При замкнутом положении аппарата подвижный контакт полюса, для которого выбраны наиболее жесткие условия испытания, должен быть зафиксирован вместе с неподвижным, например приварен к нему.

Если аппарат имеет несколько контактных систем, соединенных последовательно, все эти системы должны удерживаться в замкнутим пиложении.

В случае контактной системы с многократным разрывом наименьшее число концов параллельных контактов должно быть сблокировано вместе для необходимости удержания контактной системы е замкнутом положении, чтобы позволить испытательному усилию быть приложенным без размыкания контактов.

Способ удержания контактов в замкнутом положении и их число указывает изготовитель.

Число контактов и метод указывают в протоколе испытаний.

Напряжение питания должно подаваться к источнику управляющей энергии при 110 % его нормального номинального значения при попытке размыкания контактной системы аппарата.

Три попытки управления аппаратом должны быть сделаны двигательным приводом с интервалом е 5 мин. в течение 5 с каждая, если имеющееся защитное устройство двигательного привода не ограничивает время управления более коротким периодом.

Проверку проводят по 8.2.5.3.2.

Примечание — В Канаде и США аппараты, соответствующие данным требованиям, не считают обеспечивающими сами по себе разъединение.

8.2.5.2.3 Двигательное управление при наличии привода независимого действия

При замкнутом положении аппарата подвижный контакт полюса, для которого выбраны наиболее жесткие условия испытания, должен быть зафиксирован вместе с неподвижным, например приварен к нему.

Если аппарат имеет несколько контактных систем, соединенных последовательно, все эти системы должны удерживаться в замкнутом положении.

В случае контактной системы с многократным разрывом наименьшее число концов параллельных контактов должно быть сблокировано вместе для необходимости удержания контактной системы в замкнутом положении, чтобы позволить испытательному усилию быть приложенным без размыкания контактов.

Способ удержания контактов в замкнутом положении и их число указывает изготовитель.

Число контактов и метод указывают в протоколе испытаний.

Запасенная энергия двигательного привода независимого действия аппарата должна освобождаться для размыкания контактной системы аппарата.

Должны быть сделаны три попытки управления аппаратом за счет освобожденной запасенной энергии.

Проверку проводят по 8.2.5.3.2.

Примечание — В Канаде и США аппараты, соответствующие данным требованиям, не считают обеспечивающими сами по себе разъединение.

8.2.5.3 Состояние аппарата во время и после испытаний

8.2.5.3.1 Ручное управление при наличии привода зависимого и независимого действия

По окончании испытания, когда испытательное усилие не прикладывают к органу управления аппаратом и он остается свободным, ни одно из средств индикации, которыми оснащен аппарат, не должно указывать на разомкнутое положение контактов, а аппарат — иметь повреждений, нарушающих его нормальную эксплуатацию.

Если аппарат оснащен средствами блокировки в разомкнутом положении, должна быть исключена возможность его блокировки во время приложения испытательного усилия.

8.2.5.3.2 Двигательное управление при наличии привода зависимого и независимого действия

Во время и после испытания ни одно из средств индикации, которыми оснащен аппарат, не должно указывать на разомкнутое положение контактов, и аппарат не должен иметь повреждений, нарушающих его нормальную эксплуатацию.

Если аппарат оснащен средствами блокировки в разомкнутом положении, должна быть исключена возможность его блокировки во время испытания.

8.2.6 Свободный

8.2.7 Испытания вводов для стальных трубопроводов на вытягивание, кручение, изгиб

Данное испытание следует проводить со стальной трубкой длиной (300 ± 10} мм.

Оболочки из полимерных материалов монтируют согласно инструкциям изготовителя в наиболее неблагоприятном положении.

Испытания следует проводить на одном и том же вводе для трубок; ввод должен быть самым неудобным.

Испытания проводят в соответствии с 8.2.7.1—8.2.7.3.

8.2.7.1 Испытание на вытягивание

Трубка по 8.2.7 должна плавно вкручиваться во ввод крутящим моментом, равным двум третям значений, указанных в таблице 22. В течение 5 мин к трубке прикладывают тянущее усилие без рывков в прямом направлении.

При отсутствии иных указаний в стандарте на аппарат конкретного вида тянущее усилие должно соответствовать таблице 20.

После испытания смещение трубки относительно ввода должно составлять не более одного оборота резьбы, и не должно быть повреждений, нарушающих дальнейшую эксплуатацию оболочки.

д.2.7.2 Испытание на изгиб

К свободному концу трубки возрастающий момент изгиба следует прикладывать без рывков, равномерно.

Когда приложенный момент приведет к изгибу трубки 25 мм на 300 мм ее длины или значение момента изгиба достигнет приведенного в таблице 21. это значение момента сохраняют в течение 1 мин. Затем испытание повторяют в перпендикулярном первому направлении.

После испытания не должно быть повреждений, влияющих на дальнейшую эксплуатацию оболочки.

8.2.7.3 Испытание на крутящий момент

Стальная трубка для проводников должна затягиваться без рывков крутящим моментом по таблице 22.

Испытание на крутящий момент не проводят для оболочек аппаратов, не оснащенных предварительно омонтиривенным вводим, а согласии инструкции ввод следует механически подсоединять к трубке до присоединения к оболочке.

Для оболочек, снабженных единственным вводом для подсоединения до 16 Н включительно, значение затягивающего крутящего момента снижают до 25 Нм.

После испытания не должно быть возможным выкрутить трубку из ввода и не должно быть повреждений. нарушающих эксплуатацию оболочки.

8.3 Работоспособность

8.3.1 Циклы испытаний

Циклы испытаний, которым должен быть подвергнут аппарат, должны быть указаны в стандарте на аппарат конкретного вида.

8.3.2 Общие условия испытаний

Примечание — Испытания на соблюдение требований настоящего стандарта не отрицают необходимости в дополнительных испытаниях, касающихся оборудования в составе комплектных устройств согласно серии IEC 61439.

6.3.2.1 Общие требования

Подлежащий испытанию аппарат должен во всех основных деталях соответствовать типу конструкции. к которому он относится.

При отсутствии других указаний в стандарте на аппарат конкретного вида любое испытание, отдельное или в цикле, должно проводиться на чистом и новом аппарате.

При отсутствии других указаний испытания следует проводить на токе того же рода (а если ток переменный, при той же номинальной частоте и равном числе фаз), как в предполагаемых условиях эксплуатации.

Значения испытательных параметров, не установленные в настоящем стандарте, должны указываться в стандарте на аппарат конкретного вида.

Если для удобства испытания представляется желательным усилить его жесткость (например, увеличить частоту оперирования, чтобы сократить длительность испытания), это допускается только с согласия изготовителя.

Испытуемый аппарат е укомплектованном виде следует монтировать на его собственном основании или эквивалентной опоре и присоединять, как в нормальных условиях эксплуатации, в соответствии с инструкциями изготовителя и условиями окружающей среды, указанными в 6.1.

Затягивающие крутящие моменты, прикладываемые к винтам зажимов, должны соответствовать инструкциям изготовителя или. при их отсутствии, таблице 4.

Аппарат в неотделимой оболочке (см. 2.1.17) должен быть смонтирован в укомплектованном виде, и все отверстия, закрытые в нормальных условиях эксплуатации, должны быть закрыты на время испытаний.

Аппарат, предназначенный для использования в отдельной оболочке, следует испытывать в наименьшей оболочке, указанной изготовителем.

Все другие аппараты следует испытывать на открытом воздухе. Если аппарат может быть также использован в специальных отдельных оболочках и после испытания на открытом воздухе, для него следует провести дополнительные специальные испытания в наименьшей из оболочек, указанных изготовителем: специальные испытания указаны в стандарте на аппарат конкретного вида и протоколе испытаний.

Однако, если аппарат может также использоваться в специальных отдельных оболочках и испытания проводят в наименьшей из оболочек, указанных изготовителем, то испытания на открытом воздухе не проводят при условии, что эта оболочка металлическая без изоляции.

Описание испытания, в том числе размеры оболочки, следует указывать в протоколе испытаний.

Для испытаний на открытом воздухе (при отсутствии других указаний в стандарте на аппарат конкретного вида) на время испытаний на включающую и отключающую способности и работоспособность в условиях короткого замыкания во всех точках аппарата, которые могут оказаться источником внешних эффектов, способных вызвать пробой, в соответствии с компоновкой и расстояниями, установленными изготовителем, помещают металлический экран (например, проволочную сетку). Детали испытаний, в юм числе расстояние между испытуемым аппаратом и металлическим экраном, указывают в протоколе испытания.

Характеристики металлического экрана:

- структура: проволочная сетка, или металлический лист с отверстиями, или развальцованный металлический лист;

- материал — сталь;

- соотношение площади отверстий и общей площади должно быть 0,45—0.65:

- размер отверстия — не более 30 мм2.

- покрытие — без покрытия или с токоведущим покрытием;

- сопротивление — следует учитывать при расчете ожидаемиги тика повреждения в цепи плавкого предохранителя [см. 8.3.3.5.2. перечисление д) и 8.3.4.1.2. перечисление d)). следует измерять от самой удаленной точки попадания на экран выбросов дуги.

Обслуживание или замена частей не допускается, если нет других указаний в стандарте на аппарат конкретного вида.

До начала испытаний аппаратом можно оперировать без нагрузки.

В ходе испытаний системой управления контактными коммутационными аппаратами следует оперировать как в предполагаемых условиях эксплуатации, указанных изготовителем, так и при номинальных значениях управляющего параметра (напряжения или давления) при отсутствии других указаний в настоящем стандарте или соответствующем стандарте на аппарат.

8.3.2.2 Испытательные параметры

8.3.2.2.1 Значения испытательных параметров

Все испытания должны проводиться при значениях испытательных параметров, соответствующих номинальным значениям, указанным изготовителем, в соответствии с таблицами и данными стандарта на аппарат конкретного вида.

8.3.2.2.2 Допуски по испытательным параметрам

Значения допусков, зафиксированные в протоколе испытаний, не должны выходить за пределы, приведенные в таблице 8. при отсутствии других указаний в других пунктах. Однако с согласия изготовителя можно проводить испытания в более жестких условиях, чем установленные.

8.3.2.2.3 Восстанавливающееся и возвращающееся напряжение

а) Возвращающееся напряжение

При испытаниях на отключающую способность и наибольшую отключающую способность значение возвращающегося напряжения должно составлять 1.05 номинального рабочего напряжения, установленного изготовителем или в стандарте на аппарат конкретного вида.

Примечания

1 Значение, равное 1.05 номинального рабочего напряжения для возвращающегося напряжения при допуске по таблице 8. фактически учитывает колебания сетевого напряжения в нормальных условиях эксплуатации в соответствии с IEC 60038.

2 Может потребоваться увеличение напряжения до включения, но ожидаемый пиковый ток включения без согласия изготовителя не должен быть превышен.

3 С согласия изготовителя допускается повышение верхнего предела возвращающегося напряжения {см. 8.3.2.2.2).

Ь) Восстанавливающееся напряжение

В соответствующем стандарте на аппарат конкретного вида восстанавливающееся напряжение определяют (если требуется) no 8.3.3.S.2.

8.3.2.3 Оценка результатов испытания

Поведение аппарата во время испытаний и его состояние после испытаний должны соответствовать требованиям стандарта на аппарат конкретного вида.

Об испытаниях на короткие замыкания см. также 8.3.4.1.7 и 8.3.4.1.9.

8.3.2.4 Протоколы испытаний

Изготовитель должен представить протоколы типовых испытаний, подтверждающие соответствие аппарата требованиям стандарта на аппарат конкретного вида. В протоколах испытаний должны содержаться следующие сведения: тип и размеры оболочки (при ее наличии): размеры проводников; расстояние от частей, находящихся под напряжением, до оболочки или до частей, нормально заземленных при эксплуатации; способы действия системы управления и т. д.

Протокол испытания должен содержать перечень испытательных параметров и их значений.

8.3.3 Работоспособность при нулевой и нормальной нагрузках и перегрузке

8.3.3.1 Срабатывание

Испытания проводят для проверки правильности работы оборудования в соответствии с требованиями 7.2.1.1.

6.3.3.2 Пределы срабатывания

8.3.3.2.1 Аппарате двигательным приводом

Следует убедиться, что аппарат правильно замыкается и размыкается при предельных значениях следующих управляющих параметров: напряжение: ток; давление воздуха; температуры, установленные в стандарте на аппарат конкретного вида. При отсутствии других указаний испытания проводят с обесточенной главной цепью.

В случае аппарата с двигательным приводом с электромагнитом электронного управления, питаемого переменным током, если диапазон отпадания составляет от 75 до 10 % номинального напряжения питания цепи управления Us, аппарат должен дополнительно подвергнуться испытанию на емкостное отпадание.

Конденсатор С последовательно вводят в цепь питания Us, при этом общая длина соединительных проводников s 3 м. Конденсатор замыкают накоротко выключателем с незначительным полным сопротивлением. Затем напряжение питания регулируют до 110 % Us.

Проверяют отпадание аппарата при переводе выключателя в разомкнутое положение.

Величина конденсатора составляет.

С (нФ) = 30 ♦ 200000 / (f ■ Us).

где f — минимальная номинальная частота (Гц);

Us — максимальное номинальное напряжение питания (В).

Например, для катушки с параметрами 12...24 В — 50 Гц величина емкости 196 нФ (расчет noVsm„).

Испытательное напряжение — наибольшее значение из заданного диапазона номинального напряжения питания Us.

Примечание — Величина конденсатора имитирует типичную схему управления с длиной кабеля 100м и сечением 1.5 мм2 (0.3 нФ/м. т. е. 30 нФ на 100 м). присоединенную к статическому выходу с током утечки 1.3 мА <200 000 в формуле «10Е + 9-1.3Е - 3/2*л).

8.3.3.2.2 Реле и расцепители

Пределы срабатывания реле и расцепителей должны соответствовать требованиям 7.2.1.3—

7.2.1.5 и проверяться испытаниями по методике, указанной в стандарте на аппарат конкретного вида.

Пределы срабатывания минимальных реле и расцепителей напряжения см. 7.2.1.3.

Пределы срабатывания независимых расцепителей см. 7.2.1.4.

Пределы срабатывания реле и расцепителей, оперируемых током, см. 7.2.1.5.

8.3.3.3 Превышение температуры

8.3.3.3.1 Температура окружающего воздуха

В последнюю четверть периода испытания не менее двух датчиков температуры (например, термометры или термопары), установленных равномерно вокруг аппарата приблизительно на середине его высоты и на расстоянии около 1 м от него, записывают температуру окружающего воздуха. Датчики температуры должны быть защищены от воздушных потоков, теплового излучения и ошибок, обусловленных резкими изменениями температуры.

Во время испытаний температура окружающего воздуха должна быть от 10 до 40 °C и не должна изменяться более чем на 10 °C. Температура окружающего воздуха не должна меняться более чем на 3 °C в течение последней четверти испытания или в последний час испытания, выбирают, что короче. Испытание проводят до достижения этого условия.

8.3.3.3.2 Измерение температуры частей аппарата

Температуру различных частей аппарата, кроме катушек, измеряют пригодными для этого датчиками температуры е точках наибольшей вероятности максимальной температуры; эти точки следует указать в протоколе испытания.

Температуру масла в маслонаполненных аппаратах измеряют в верхней части масляной заливки; Данные измерения ДиПуикаеТсЯ проводить термометром.

Датчик температуры не должен заметно влиять на превышение температуры частей аппарата. Для этого необходимо обеспечить хорошую теплопроводность между датчиками температуры и поверхностью испытуемой части аппарата.

Температуру электромагнитных катушек, как правило, определяют по изменению их сопротивления. Применение других методов допускается только в случае невозможности применения этого метода, например для электромагнита с электронным управлением. При этом допустимые пределы соответственно регулируют. Конкретный метод и пределы превышения температуры устанавливают в стандарте на аппарат.

В случае электромагнита с электронным управлением определение температуры катушек по изменению их сопротивления может быть неприменимо. В таком случае допускаются другие методы измерения, например с помощью термопар или других приемлемых методов. При измерении другим методом, кроме метода измерения сопротивления, допустимые пределы превышения температуры соответственно регулируются. Метод и пределы устанавливают в стандарте на аппарат конкретного вида.

Температура катушек перед началом испытания не должна отличаться от температуры окружающей среды более чем на 3 °C.

Для медных проводников температуру в нагретом состоянии 7S можно рассчитать по температуре в холодном состоянии Гп как функцию отношения сопротивлений в нагретом состоянии R2 и в холодном состоянии Я, по формуле

Т2(Г, + 234.5)-234.5.

R,

да 7, и — температура. °C.

Длительность испытания должна быть достаточной для достижения установившегося значения превышения температуры, но не более 8 ч.

Установившееся значение считают достигнутым, если изменение не превышает 1 °С/ч.

8.3.3.3.3 Превышение температуры части аппарата

Превышение температуры части аппарата равно разности между температурой измеряемой части. измеренной по 8.3.3.3.2. и температурой окружающего воздуха, измеренной по 8.3.3.3.1.

8.3.3.3.4 Превышение температуры главной цепи аппарата

Аппарат монтируют по 8.3.2.1 и защищают от аномального внешнего нагрева или охлаждения.

Аппарат с неотделимой оболочкой или предназначенный для использования только в оболочке установленного типа на условный тепловой ток испытывают в такой же оболочке. Наличие отверстий, создающих ненужную вентиляцию, не допускается.

Аппараты, предназначенные для использования в оболочке более чем одного типа, испытывают либо в наименьшей из оболочек, указанных изготовителем, либо без оболочки. В случае испытания без оболочки изготовитель должен при необходимости сообщить значение условного теплового тока в оболочке (см. 4.3.2.2).

При испытаниях на многофазных токах ток следует уравновесить в каждой фазе в пределах ♦ 5 %. и среднее значение многофазных токов должно быть не менее соответствующего испытательного тока. 62

При отсутствии других указаний в стандарте на аппарат конкретного вида главную цепь аппарата испытывают на превышение температуры при одном или обоих условных тепловых токах согласно 4.3.2.1.4.3.2.2 и любом удобном напряжении.

Если возможны значительные эффекты взаимного нагрева главной цепи, цепей управления и вспомогательных цепей аппарата, испытания на превышение температуры по 8.3.3.3.4—8.3.3.3.7 следует проводить одновременно (по применимости) и согласно стандарту на аппарат конкретного вида.

Аппарат для работы на постоянном токе для удобства можно испытывать на переменном токе, но юлько с согласия изготовителя.

Многополюсный аппарат с идентичными полюсами, испытываемый переменным током, допускается с согласия изготовителя испытывать однофазным током, последовательно соединив все полюса (если можно пренебречь магнитными эффектами).

Испытания трехполюсного аппарата с одним нейтральным полюсом, отличным от фазовых полюсов. должны включать в себя:

- испытание трех идентичных полюсов трехфазным током;

- испытание однофазным током нейтрального полюса, соединенного последовательно с соседним полюсом, при условии, что значения испытательных параметров определяют в зависимости от условного теплового тока (в оболочке или без оболочки) нейтрального полюса (см. 7.1.8).

Аппарат, снабженный устройствами для защиты от коротких замыканий, следует испытывать в соответствии с требованиями стандарта на аппарат конкретного вида.

В конце испытания превышение температуры отдельных частей главной цепи не должно быть более значений, указанных в таблицах 2 и 3 (при отсутствии других указаний в стандарте на аппарат конкретного вида).

В зависимости от значения условного теплового тока (в оболочке или без оболочки) применяют следующую систему испытательных соединений:

i) при испытательных токах до 400 А включительно:

a) соединения должны осуществляться одножильными медными проводниками с поперечными сечениями по таблице 9 в поливинилхлоридной изоляции;

b) присоединяемые проводники должны прокладываться на открытом воздухе на расстоянии друг от Други, равном расстоянию между выводами.

c) минимальная длина любого временного соединения между выводом аппарата и другим выводом или источником испытательного тока или вершиной звезды при испытаниях одно- или многофазным током должна быть:

-1м — при поперечных сечениях проводников до 35 мм2 (или AWG2) включительно;

-2м — при поперечных сечениях проводников свыше 35 мм2 (или AWG 2);

ii) при испытательных токах свыше 400 А. но не более 800 А:

a) соединения должны осуществляться одножильными медными проводниками с площадью поперечного сечения по таблице 10 в поливинилхлоридной изоляции или эквивалентными медными шинами по таблице 11 согласно рекомендациям изготовителя;

b) присоединяемые по перечислению а) проводники должны располагаться на расстоянии друг от друга, приблизительно равном расстоянию между выводами. Медные шины должны быть окрашены в матовый черный цвет. Несколько параллельных проводников, подключенных к одному выводу, должны быть собраны в пучок с воздушными зазорами между проводниками около 10 мм. Несколько медных шин. присоединенных к одному выводу, должны быть удалены друг от друга на расстояние. приблизительно равное толщине шины. Если указанные размеры поперечного сечения шин для выводов непригодны или недоступны, можно использовать другие шины равного поперечного сечения и с равной или меньшей поверхностью охлаждения. Медные провода или шины не должны быть слоистыми.

c) минимальная длина любого временного соединения между выводом аппарата и другим выводом или источником испытательного тока при испытаниях одно- или многофазным током должна быть 2 м. Минимальную длину соединения с вершиной звезды можно уменьшить до 1,2 м;

iii) при испытательных токах свыше 800 А. но не более 3150 А:

a) соединения должны выполняться медными шинами размеров, указанных в таблице 11. если аппарат не рассчитан исключительно на кабельные соединения. В этом случае размеры и компоновка кабелей должны соответствовать инструкциям изготовителя;

b) расстояния между медными шинами должны быть приблизительно равны расстоянию между выводами. Медные шины должны быть окрашены в матовый черный цвет. Медные шины, параллельно присоединенные к одному выведу, должны располагаться на расстоянии друг от друга, приблизительно равном толщине шины.

Если указанные размеры шик несовместимы с размерами выводов или отсутствуют, можно использовать другие шины с приблизительно равной или меньшей площадью поверхности охлаждения. Медные шины не должны быть слоистыми;

с) минимальная длина любого временного соединения между выводом аппарата и другим выводом или источником питания при испытаниях одно- или многофазным током должна быть 3 м. но ее можно сократить до 2 м при условии, что превышение температуры на сетевом конце соединения не более чем на 5 °C ниже превышения температуры на середине длины соединения между выводом аппарата и другим выводом или источником питания. Минимальная длина соединения с вершиной звезды должна быть равна 2 м;

iv) при испытательных токах свыше 3150 А.

Изготовитель и потребитель должны прийти к соглашению обо всех важных характеристиках испытания: типу источника питания, числе фаз и частоте (если требуется), поперечных сечениях испытательных соединений и т. п. Эта информация должна быть внесена в протокол испытания.

8.3.3.3.5 Превышение температуры цепей управления

Испытания цепей управления на превышение температуры должны проводиться при указанном токе, а в случае переменного тока и при номинальной частоте. Цепи управления следует испытывать при их номинальном напряжении.

Цепи, предназначенные для работы в длительном режиме, следует испытывать достаточно долго с тем. чтобы превышение температуры успело достичь устойчивого значения.

Цепи для работы в повторно-кратковременном режиме следует испытывать в соответствии со стандартом на аппарат конкретного вида.

По завершении данных испытаний превышение температуры различных частей цепей управления не должно превышать значений, указанных в 7.2.2.5 (при отсутствии других указаний в стандарте на аппарат конкретного вида).

8.3.3.3.6 Превышение температуры катушек электромагнитов

Катушки и электромагниты следует испытывать в условиях по 7.2.2.6.

Их следует испытывать достаточно долго, для того чтобы превышение температуры успело достичь устойчивого значения.

Температуру измеряют по достижении теплового равновесия как в главной цепи, так и в катушке электромагнита.

Катушки и электромагниты аппаратов, рассчитанных на работу в повторно-кратковременном режиме. испытывают в соответствии со стандартом на аппарат конкретного вида.

По завершении данных испытаний превышение температуры различных частей не должно превышать значений, указанных в 7.2.2.6.

8.3.3.3.7 Превышение температуры вспомогательных цепей

Вспомогательные цепи испытывают на превышение температуры в условиях no 8.3.3.3.5. но при любом удобном напряжении.

В конце этих испытаний превышение температуры вспомогательных цепей не должно превышать значений, указанных в 7.2.2.7.

8.3.3.4 Электроизоляционные свойства

8.3.3.4.1 Типовые испытания

1) Общие условия испытаний на выдерживаемое напряжение

Испытуемый аппарат должен соответствовать общим требованиям по 8.3.2.1.

Если аппарат предназначен для использования без оболочки, он должен быть смонтирован на металлической плите, к которой присоединяют все открытые токопроводящие части (корпус и т. п), в нормальных условиях заземляемые.

Если основание аппарата выполнено из изоляционного материала, во всех точках крепления согласно условиям нормальной установки аппарата помещают металлические части, и эти части считают частью корпуса аппарата.

Любой орган управления, выполненный из изоляционного материала, и неотделимая неметаллическая оболочка аппарата, предназначенного для использования без дополнительной оболочки, должны быть покрыты металлической фольгой и соединены с корпусом и монтажной плитой. Фольгой должны быть закрыты только те поверхности, которых можно коснуться стандартным испытательным щупом при эксплуатации или регулировке аппарата.

Если изолирующей части неотделимой оболочки аппарата нельзя коснуться стандартным испытательным щупом из-за дополнительной оболочки, фольгу не применяют.

Примечание 1 — Речь идет о доступных для оператора при нормальной эксплуатации или регулировке частях (например, орган управления нажимной кнопкой). Руководство по применению металлической фольги на частях, доступных при нормальной эксплуатации или регулировке, приведено 8 приложении R.

В случае если электрическая прочность изоляции аппарата зависит от покрытия проводов или применения специальной изоляции, при испытаниях также используют покрытия и специальную изоляцию.

При проведении электроизоляционных испытаний между фазами все цепи между этими фазами могут быть отсоединены в этом испытании.

Примечание 2 — Целью данного испытания является исключительно проверка функциональной изоляции.

Если в цепь аппарата включены другие устройства, например двигатели, станки, щелчковые выключатели, конденсаторы и полупроводниковые устройства, которые согласно их собственным техническим условиям подвергались электроизоляционным испытаниям более низкими напряжениями, чем указаны в настоящем стандарте, то такие устройства в данном испытании должны быть отключены.

Если цель управления, нормально соединенная с главной цепью, отсоединена, то способ удержания главных контактов в замкнутом положении должен быть указан в протоколе испытания.

При проведении электроизоляционных испытаний между фазами и землей все цепи должны быть подсоединены.

Примечание 3 — Присоединение всех цепей в этом испытании выполняют для проверки функции защиты изоляции между фазами и землей от поражения электрическим током.

При испытании изоляции печатные платы и модули с многоконтактными разъемами могут быть сняты, отсоединены и заменены макетами.

Однако это не относится к вспомогательным цепям, в которых в случае повреждения изоляции под напряжением могут оказаться доступные части, не соединенные с корпусом аппарата, либо высокое напряжение из высоковольтной части может лопасть в низковольтную часть, например во вспомогательных трансформаторах, измерительных приборах, импульсных трансформаторах, в которых нагрузка на изоляцию эквивалентна нагрузке в главной цепи.

2} Проверка импульсным выдерживаемым напряжением

a) Общие требования

Аппарат должен соответствовать требованиям, изложенным в 7.2.3.1.

Изоляцию проверяют испытанием при номинальном импульсном выдерживаемом напряжении.

В случае если аппарат содержит элементы, на электроизоляционные свойства которых не влияет высота над уровнем моря (например, оптопары, герметизированные детали и т. л.), проверку изоляции проводят альтернативным испытанием при номинальном импульсном выдерживаемом напряжении без коэффициента поправки на высоту над уровнем моря. Тогда вышеуказанные элементы отсоединяют и оставшуюся часть аппарата испытывают при номинальном импульсном выдерживаемом напряжении, применяя коэффициент поправки на высоту над уровнем моря.

Воздушные зазоры, равные или превышающие указанные для случая А в таблице 13. можно проверить методом измерения в соответствии с приложением G.

b) Испытательное напряжение

Испытательное напряжение должно соответствовать указанному в 7.2.3.1.

Для аппаратов, оснащенных устройствами для подавления перенапряжений, энергосодержание испытательного тока не должно превышать номинального энергетического параметра устройства для подавления перенапряжений. Указанный выше параметр должен быть удобен для применения.

Примечание 1 — Подобные вышеуказанному параметры находятся в стадии рассмотрения.

Испытательное оборудование калибруют на подачу импульса 1.2/50 мкс. как указано в IEC 61160. Затем к выходным выводам испытательного устройства подсоединяют испытуемый аппарат, и для каждой полярности с минимальным интервалом 1 с пять раз подают импульс. Влияние испытуемого аппарата на форму волны (при наличии) не учитывают.

Если в ходе испытания потребуется повторное испытание на электрическую прочность изоляции, его условия должны устанавливаться в стандарте на аппарат конкретного вида.

Примечание 2 — Испытательное оборудование находится в стадии рассмотрения.

c) Подача испытательного напряжения

После установки и подготовки аппарата в соответствии с перечислением а) испытательное напряжение подают в следующем порядке:

i) между всеми выводами главной цели, соединенными между собой (с присоединением к главной цепи вспомогательных цепей и цепей управления), и оболочкой или монтажной плитой при всех нормальных рабочих положениях контактов:

И) между каждым полюсом главной цепи и соединенными между собой другими полюсами и оболочкой или монтажной плитой при всех нормальных рабочих положениях контактов;

iii) между каждой цепью управления и вспомогательной цепью, нормально не присоединенными к главной цепи, и:

- главной целью;

- прочими цепями:

- открытыми токопроводящими частями:

- оболочкой или монтажной плитой, которые (если требуется) могут быть соединены между собой:

iv) между полюсами главной цепи для аппарата, пригодного для разъединения. При этом соединяются между собой отдельно входные и отдельно выходные выводы.

Испытательное напряжение подают между входными и выходными выводами аппарата при разомкнутых контактах, а его значение должно соответствовать 7.2.3.1, пункт 1). перечисления Ь).

Для аппаратов, не пригодных для разъединения, требования к испытанию при разомкнутых кон-idKTaX — в соответствии со стандартом на аппарат конкретного вида.

d) Критерии соответствия

Во время испытаний не должно возникать непреднамеренных пробивных разрядов.

Примечания

1 Исключением является преднамеренный пробивной разряд с целью, например, подавления переходного перенапряжения.

2 Термин «пробивной разряд» относится к явлениям, связанным с повреждением изоляции под электрической нагрузкой, когда разряд полностью перекрывает испытуемую изоляцию, сводя напряжение между электродами практически к нулю.

3 Если пробивной разряд возникает в газообразном или жидком диэлектрике, применяется термин «перекрытие» («sparkover» от слова «spark» — искра).

4 Если пробивной разряд происходит в газообразной или жидкой среде, применяется термин «перекрытие» («flashover» от cnoea «dash» — вспышка).

5 Если пробивной разряд проходит сквозь твердый диэлектрик, применяется термин «пробой» («puncture»).

6 Пробивной разряд 8 твердом диэлектрике приводит к устойчивой утрате электрической прочности изоляции. в жидкостном или газообразном диэлектрике такая утрата может оказаться временной.

3) Проверка твердой изоляции выдерживаемым напряжением промышленной частоты

a) Общие требования

Данное испытание касается проверки твердой изоляции и способности выдерживать временные перенапряжения.

Очевидно, что данные, приведенные в таблице 12а. характеризуют способность выдерживать временные перенапряжения (см. таблица 12а. примечание 2).

b) Испытательное напряжение

Форма волны испытательного напряжения должна быть практически синусоидальной и частота должна быть от 45 до 65 Гц.

Примечание — Фраза «практически синусоидальной» означает, что соотношение между пиковым значением и действующим значением составляет ^2 ± 3 %.

Конструкция применяемого при испытании высоковольтного трансформатора должна быть такой, чтобы после того как выходное напряжение будет отрегулировано до соответствующего испытательного значения, при замыкании выходных выводов накоротко выходной ток был не менее 200 мА.

Максимальное реле тока не должно сработать при выходном токе менее 100 мА.

Значение испытательного напряжения должно быть следующим:

i) для главной цели, целей управления и вспомогательных цепей в соответствии с таблицей 12а. погрешность измерения испытательного напряжения не должна выходить за пределы ± 3 %;

ii) если проведение испытания напряжением переменного тока невозможно, например из-за наличия фильтра электромагнитных помех, допускается проведение испытания напряжением постоянного тока с использованием значений, приведенных в таблице 12а. третья графа.

c) Подача испытательного напряжения

Испытательное напряжение подают в течение 60 с в соответствии с 8.3.3.4.1, пункт 2). перечисления с) 0, н) и iii).

Примечание — Для аппаратов, прошедших типовые испытания согласно данному стандарту, измерению 1 или ранее, проводить испытание в течение 60 с нет необходимости.

d) Критерии соответствия

Во время испытания не должно происходить пробивных разрядов, внутренних и внешних пробоев изоляции или демонстрации других признаков пробоев. Тлеющим разрядом следует пренебречь.

Элементы цепи, присоединенные между фазой и землей, могут получить повреждение во время испытания. однако подобное повреждение не должно создать условия, способные привести к опасной ситуации. В стандартах на аппараты конкретных видов должны быть приведены особые критерии соответствия.

Примечание — Уровни напряжения на землю приведены в соответствии с IEC 60664-1. исходя из наихудших условий (которые в практике не встречаются).

4) Проверка выдерживаемым напряжением промышленной частоты после коммутационных испытаний и испытаний на короткое замыкание

a) Общие требования

Данное испытание следует проводить на смонтированном аппарате после коммутационных испытаний или испытаний на короткое замыкание.

Если по какой-то причине это неосуществимо, аппарат можно отсоединить и отделить от испытательной цепи, тем не менее следует принять меры, чтобы это отсоединение не повлияло на результат испытания.

b) Испытательное напряжение

Действуют требования пункта 3). перечисление Ь). за исключением того, что значение испытательного напряжения должно быть 2 Ug, но не менее 1000 В (действующее значение переменного тока).

Примечание — Стандарты на аппараты конкретных видов при переиздании должны быть откорректированы в соответствии с данным требованием.

c) Подача испытательного напряжения

Действуют требования пункта 3), перечисление с). Применение металлической фольги по пункту 6.3.3.4.1. перечисление 1) не требуется.

d) Критерии соответствия

Действительны требования пункта 3). перечисление d).

5) Свободный

6} Проверка выдерживаемым напряжением постоянного тока

Аппараты, предназначенные для применения на постоянном токе, испытывают только на постоянном токе.

7) Проверка расстояний утечки

Следует измерять кратчайшие расстояния между фазами, между проводниками цепи при различных напряжениях и частями, находящимися под напряжением, и открытыми токопроводящими частями. Измеренное расстояние утечки с учетом группы материала и степени загрязнения должно соответствовать требованиям 7.2.3.4.

8) Проверка тока утечки аппарата, пригодного для разъединения

Испытания должны быть приведены в стандарте на аппарат конкретного вида.

8.3.3.4.2 Контрольные испытания

1) Импульсное выдерживаемое напряжение

Данные испытания следует проводить по пункту 8.3.3.4.1. перечисление 2).

Испытательное напряжение должно быть не менее 30 % номинального импульсного выдерживаемого напряжения (без коэффициента поправки на высоту над уровнем моря) или удвоенного номинального напряжения изоляции (2 Ц) — выбирают, что больше.

2) Выдерживаемое напряжение промышленной частоты а) Испытательное напряжение

Испытательное оборудование должно быть такое же. как указано в 8.3.3.4.1, пункт 3), перечисление Ь). за исключением того, что максимальный расцепитель тока должен иметь уставку 25 мА.

Однако по усмотрению изготовителя в целях безопасности может быть применена испытательная установка меньшей мощности или меньшее значение уставки расцепителя. Тем не менее ток короткого замыкания испытательной установки должен быть не менее 8-кратного номинального значения уставки расцепителя максимального реле тока, например для трансформатора с током короткого замыкания 40 мА максимальная уставка расцепителя максимального реле тока должна быть (5 ± 1) мА.

Примечание 1 — Допускается учитывать емкостное сопротивление аппарата.

Испытательное напряжение должно быть 2 Uo. но не менее 10ОО В переменного тока (действующее значение).

Примечание 2 — В случае нескольких значений Ue относится к наибольшему значению, маркированному на аппарате или приведенному в документации изготовителя.

b) Подача испытательного напряжения

Действуют требования 8.3.3.4.1, пункт 3), перечисление с), однако длительность подачи испытательного напряжения должна составлять не более 1 с.

В качестве альтернативы возможно испытание по упрощенной методике, если изоляцию подвергают эквивалентным испытательным нагрузкам.

c) Критерии соответствия

Максимальное реле тока не должно сработать.

3) Комбинированное импульсное выдерживаемое напряжение и выдерживаемое напряжение промышленной частоты

В стандартах на аппарат конкретного вида может содержаться указание о возможности замены испытаний по 8.3.3.4.2, пункты 1) и 2) одним испытанием на выдерживаемое напряжение промышленной частоты, если пиковое значение синусоидальной волны тока соответствует значению, указанному в 8.3.3.4.2, пункты 1) или 2). выбирают большее значение.

4) Применение металлической фольги ни в одном из случаев согласно 8.3.3.4.1, пункт 1) не требуется.

8.3.3.4.3 Выборочные испытания для проверки воздушных зазоров

1) Общие требования

Данные испытания предназначены для проверки соблюдения требований к конструкции в части воздушных зазоров и проводятся только на аппаратах с воздушными зазорами менее соответствующих таблице 13. случай А.

2) Испытательное напряжение

Испытательное напряжение должно соответствовать номинальному импульсному выдерживаемому напряжению.

Программа и методика отбора образцов для испытаний должны устанавливаться в стандарте на аппарат конкретного вида.

3) Подача испытательного напряжения

Испытательное напряжение подают в соответствии с 8.3.3.4.1, пункт 2). перечисление с), но без покрытия органа управления или оболочки металлической фольгой.

4) Критерии соответствия

Во время испытаний не должны возникать пробивные разряды.

8.3.3.4.4 Испытания аппаратов с разной степенью защиты по изоляции

Испытания аппаратов с разной степенью защиты по изоляции приведены в приложении N.

8.3.3.5 Включающая и отключающая способности

8.3.3.5.1 Общие условия испытания

Испытания на проверку включающей и отключающей способностей проводят в соответствии с общими условиями испытаний по 8.3.2.

Допуски для отдельных фаз должны соответствовать указанным в таблице 8 (если нет иных указаний).

Четырехполюсный аппарат испытывают как трехполюсный с неиспользуемым полюсом, который в аппарате с нейтральным полюсом является нейтральным полюсом, присоединенным к корпусу.

Если все полюса одинаковы, достаточно одного испытания на трех соседних полюсах. В противном случае требуется дополнительное испытание между нейтральным и ближайшим к нему полюсами (см. рисунок 4) при номинальном токе нейтрального полюса и напряжении между фазой и нейтралью, тогда как два других, неиспользуемых полюса присоединяют к корпусу.

Значения восстанавливающегося напряжения при испытаниях на отключающую способность в условиях нормальной нагрузки и перегрузки указывают в стандарте на аппарат конкретного вида.

8.3.3.5.2 Испытательная цепь

a) На рисунках 3—6 представлены следующие схемы целей, используемых при испытаниях:

- однополюсного аппарата однофазным переменным или постоянным током (см. рисунок 3):

■ двухполюсного аппарата однофазным переменным или постоянным током (см. рисунок 4};

- трехполюсного аппарата или трех однополюсных аппаратов трехфазным переменным током (см. рисунок 5);

- четырехполюсного аппарата трехфаэкым переменным током в четырехлроводной схеме (см. рисунок 6).

Подробная схема цепи, использованной для испытания, должна быть приведена в протоколе испытания.

b) Ожидаемый ток на входных выводах аппарата должен быть не менее одного из двух значений: 10-кратного испытательного тока или 50 кА; выбирают меньшее значение.

c) Испытательная цепь включает в себя источник питания, аппарат D. подвергающийся испытанию. и цепь нагрузки.

d) В цепь нагрузки должны входить сопротивления и реакторы с воздушными сердечниками, соединенными последовательно. Реакторы с воздушными сердечниками в любой фазе должны быть шунтированы сопротивлениями, отводящими около 0.6 % тока, проходящего через реактор.

Однако в случаях, когда указывается значение восстанавливающегося напряжения, шунтирующие сопротивления, отводящие 0,6 % тока, следует заменить параллельными нагрузке сопротивлениями и конденсаторами так. чтобы вся цепь нагрузки приняла вид в соответствии с рисунком 8.

Примечание — При испытании на постоянном токе, когда значение UR превышает 10 мс, можно использовать реактор с железным сердечником и последовательно соединенными резисторами, проверяя при необходимости осциллографом, что значение L/R равно вышеуказанному значению с отклонением, не превышающим +15 %. и время, при котором достигается 95 % установившегося тока, равно 3 ■ UR ± 20 %.

Если устанавливается переходный пусковой ток (например, в категориях применения АС-5Ь. АС-в и DC-8). стандарт на аппарат конкретного вида может рекомендовать другую нагрузку.

e) Нагрузку следует регулировать так. чтобы при заданном напряжении обеспечивались:

- значения тока и коэффициента мощности или постоянной времени, установленные в стандарте на аппарат конкретного вида:

- заданное значение возвращающегося напряжения;

- частота колебаний восстанавливающегося напряжения и коэффициент у (если указаны).

Коэффициент у — отношение значения Uy наибольшего пикового восстанавливающегося напряжения к мгновенному значению U2 (в момент прохождения тока через нуль) составляющей возвращающегося напряжения промышленной частоты (см. рисунок 7).

0 Испытательная цепь должна быть заземлена только в одной точке. Эта точка должна находиться либо со стороны нагрузки вершины звезды, либо со стороны питания вершины звезды. Положение этой точки должно быть указано в протоколе испытаний.

Примечание — Последовательность присоединения Rи X(см. рисунки в. а и 8. Ь) не допускается менять е период между регулировкой и испытанием.

д) Все части аппаратов, нормально заземляемые в условиях эксплуатации, в том числе оболочка или экран, должны быть изолированы от земли и присоединены в одной точке, как показано на рисунках 3—5 или рисунке 6.

Соединение F должно представлять собой плавкий элемент, содержащий медную проволоку диаметром 0.8 мм и длиной не менее 50 мм. или эквивалентный ему плавкий элемент для обнаружения аварийного тока.

Ожидаемый аварийный ток в цели этого плавкого элемента должен быть 1500 А ± 10 %. за исключением случаев, оговоренных в примечаниях 2 и 3. Если необходимо, следует использовать сопротивление. ограничивающее ток этим значением.

Примечания

1 Медная проволока диаметром 0,8 мм расплавляется при переменном токе 1500 А приблизительно за один полупериод при частоте от 45 до 67 Гц {или за 0.01 с при постоянном токе).

2 По соглашению с изготовителем в системе питания с искусственной нейтралью допускается более низкий ожидаемый аварийный ток с проводом меньшего диаметра в соответствии с нижеприведенным соотношением.

Диаметр медной проволоки, мм/ожидаемый аварийный ток в цели плавкого предохранителя. А; 0.1/50: 0.2/150; 0,3/300; 0.4/500; 0.5/800: 0,8/1500.

3 Значение сопротивления плавкого элемента — по В.3.2.1.

8.3.3.5.3 Характеристики восстанавливающегося напряжения

Для того чтобы смоделировать условия в цепях индивидуальных двигателей (индуктивных нагрузок). регулируют колебательную частоту цепи нагрузки f, кГц. до уровня

7» 2000 •£-2U;°-e±10%,

где f — частота колебаний. кГц;

/с — ток отклонения. А;

Uo — номинальное рабочее напряжение. В.

Коэффициент у следует отрегулировать так, чтобы у = 1,1 ± 0,05.

Значение реактивного сопротивления, необходимое для этого испытания, можно обеспечить, соединив параллельно несколько реакторов при условии, что восстанавливающемуся напряжению можно по-прежнему приписывать только одну колебательную частоту. Это фактически тот случай, когда у таких реакторов практически одинаковая постоянная времени.

Выходные выводы аппарата следует присоединить как можно ближе к выводам отрегулированной цепи нагрузки. Такая регулировка должна производиться после установки этих соединений на место.

Два способа регулирования цепи нагрузки приведены в приложении Е в зависимости от положения заземления.

8.3.3.5.4 Свободный

6.3.3.5.5 Методика испытания на включающую и отключающую способности

Число операций, время прохождения тока, длительность обесточенного состояния и условия окружающей среды должны соответствовать рекомендациям стандарта на аппарат конкретного вида.

6.3.3.5.6 Состояние аппарата во время и после испытания на включающую и отключающую способности

Критерии соответствия во время и после испытания должны быть указаны в стандарте на аппарат конкретного вида.

8.3.3.6 Работоспособность

Проводят испытания для проверки соответствия требованиям 7.2.4.2.

Испытательная цепь должна соответствовать 8.3.3.5.2 и 8.3.3.5.3.

Условия испытания должны быть подробно описаны в стандарте на аппарат конкретного вида.

8.3.3.7 Износостойкость

Испытания на износостойкость предназначаются для проверки числа циклов оперирования, которое способен выдержать аппарат без ремонта или замены частей.

Испытания на износостойкость служат основанием для статистической оценки срока эксплуатации аппарата, если допускают производственные параметры.

8.3.3.7.1 Механическая износостойкость

Во время данного испытания в главной цепи не должно быть напряжения и тока. Перед испытанием аппарат допускается смазывать, если смазка предусмотрена нормальными условиями эксплуатации.

Ток в цепь управления должен подаваться при ее номинальном напряжении и (если требуется) при номинальной частоте.

В пневматические и электропневматические аппараты сжатый воздух должен подаваться под номинальным давлением.

Оперировать аппаратом с ручным управлением следует как в нормальных условиях эксплуатации.

Число циклов оперирования должно быть не менее предписанного стандартом на аппарат конкретного вида.

Для аппаратов, оснащенных размыкающими реле или расцепителями, общее число операций размыкания, которые должны выполнить такие реле или расцепители, должно быть указано в стандарте на аппарат конкретного вида.

Способ оценки результатов испытаний должен устанавливаться в стандарте на аппарат конкретного вида.

8.3.3.7.2 Коммутационная износостойкость

Условия испытания должны быть такими же. как в 8.3.3.7.1. но в главную цепь подается ток согласно требованиям стандарта на аппарат конкретного вида.

Способ оценки результатов испытания устанавливается в стандарте на аппарат конкретного вида.

8.3.3.8 Полное сопротивление полюса

Полное сопротивление полюса определяют в ходе испытания в условиях, указанных в 8.3.3.3.4. Испытание е оболочке не проводят даже в том случае, если коммутационное устройство применяют е индивидуальной оболочке.

Падение напряжения Ud измеряют между вводными и выводными выводами (выводы прилагают) коммутационного устройства в тех же измерительных точках, что и превышение температуры. Измерение проводят спустя значительное время после достижения установившегося значения превышения 1вмпературы.

Полное сопротивление на полюс определяют следующим образом:

Z=Ud// {Ом}.

Установленное значение (см. 5.1 по изменению 2) в случае нескольких одинаковых полюсов должно быть средним значением, полученным при испытании.

Необходимо следить, чтобы измерение падения напряжения не повлияло ни на превышение температуры. ни на полное сопротивление.

Примечание — Метод один и тот же независимо от числа полюсов коммутационного устройства.

8.3.4 Работоспособность в условиях короткого замыкания

В данном пункте определены условия испытаний для проверки соблюдения номинальных и предельных значений по 7.2.5. Дополнительные требования, касающиеся методики испытания, оперирования и циклов испытаний, состояния аппаратов после испытаний и испытаний на координацию аппаратов с устройствами для защиты от коротких замыканий (УЗКЗ). приводятся в стандарте на аппарат конкретного вида.

8.3.4.1 Общие условия испытаний на короткое замыкание

8.3.4.1.1 Общие требования

Действительны общие требования по 8.3.2.1. Условия оперирования механизмом управления указывают в стандарте на аппарат конкретного вида. Питание электрической или пневматической системы управления должно осуществляться при минимальном напряжении или минимальном давлении в соответствии со стандартом на аппарат конкретного вида. Следует удостовериться, что в этих условиях обесточенный аппарат срабатывает правильно.

Дополнительные условия испытания могут быть установлены в стандарте на аппарат конкретного

вида.

8.3.4.1.2 Испытательная цепь

a) На рисунках 9—12 приведены следующие схемы цепей, применяемых при испытаниях:

- однополюсного аппарата однофазным переменным или постоянным током (см. рисунок 9):

- двухполюсного аппарата однофазным переменным или постоянным током (см. рисунок 10);

- трехполюсного аппарата трехфазным переменным током (см. рисунок 11);

- четырехполюсного аппарата трехфазным переменным током в четырехпроводной схеме (см. рисунок 12).

Подробную схему использованной цепи приводят в протоколе испытаний.

Примечание — Для комбинации с УЗКЗ взаимная компоновка УЗКЗ и аппарата, подлежащего испытанию. должна быть указана в стандарте на аппарат конкретного вида.

b) Источник питания S подает ток в цепь, включающую сопротивления R,. реакторы X и испытуемый аппарат D.

В любом случае мощность источника питания аппарата должна быть достаточной для проверки характеристик, указанных изготовителем.

Активное и реактивное сопротивления должны быть регулируемыми с тем. чтобы соответствовать указанным условиям испытания. Реактор X должен быть с воздушным сердечником.

Реакторы следует соединять последовательно с сопротивлениями Rv а требуемое значение реактивного сопротивления следует обеспечить путем последовательного соединения отдельных реакторов: допускается также параллельное соединение реакторов, если у них практически одинаковая постоянная времени.

Поскольку характеристики восстанавливающегося напряжения испытательных цепей, включающих в себя большие реакторы с воздушными сердечниками, не типичны для обычных условий эксплуатации. реактор с воздушным сердечником в каждой фазе должен быть шунтирован сопротивлением.

отводящим приблизительно 0.6 % тока, проходящего через реактор, при отсутствии иного соглашения между изготовителем и потребителем.

c) В каждую испытательную цепь (см. рисунки 9—12) вводят сопротивления и реакторы между источником питания S и испытуемым аппаратом D. Положения замыкающего аппарата А и датчиков тока {lv 12, /3) могут быть различными. Замыкающий аппарат А может размещаться со стороны низкого напряжения или. наоборот, с первичной стороны. 8 последнем случае испытательный центр должен убедиться. что волна напряжения не искажается остаточной индукцией трансформатора короткого замыкания.

Соединения испытуемого аппарата с испытательной цепью должны характеризоваться в стандарте на аппарат конкретного вида.

Если для испытаний используется ток ниже номинального, то на выходной стороне аппарата между ним и короткозамыкателем следует вставить дополнительное требуемое полное сопротивление, однако можно установить его на входной стороне, но это следует указать в протоколе испытаний.

Это не относится к испытаниям на кратковременно допустимый ток (см. 8.3.4.3).

При отсутствии специального соглашения между изготовителем и потребителем, подробности которого фиксируют в протоколе испытаний, схема испытательной цепи должна соответствовать рисункам 9—12.

Заземлять следует одну и только одну точку испытательной цепи: короткозамкнутое звено испытательной цепи, или нейтральную точку источника питания, или любую другую удобную точку, но способ заземления следует указать в протоколе испытания.

d) Все части аппарата, нормально заземленные при эксплуатации, в том числе оболочка и экраны. должны быть изолированы от земли и присоединены к одной точке, как показано на рисунках 9—12.

Соединение F должно представлять собой медную проволоку диаметром 0.6 мм и длиной не менее 50 мм или эквивалентный ей плавкий элемент для обнаружения аварийного тока.

Значение ожидаемого аварийного тока в цепи с плавким элементом должно составлять 1500 А ± 10 %. за исключением случаев, оговоренных в примечаниях 2 и 3. Если необходимо, следует использовать сопротивление, ограничивающее ток до этого значения.

Примечания

1 Медная проволока диаметром О.в мм при значении тока 1500 А расплавится приблизительно за полупери-од при частоте от 45 до 67 Гц (или за 0.01 с при постоянном токе).

2 В случае применения источника питания с искусственной нейтралью допускается более низкое значение ожидаемого аварийного тока по соглашению с изготовителем. В этом случае применяют медную проволоку меньшего диаметра в соответствии с нижеприведенным соотношением.

Диаметр медной проволоки, мм

Ожидаемый аварийный тока цепи плавкого предохранителя. А

0.1

50

0.2

150

0.3

300

0.4

500

0.5

800

0.8

1500

3 Значение сопротивления плавкого элемента см. 8.3.2.1.

6.3.4.1.3 Коэффициент мощности испытательной цели

на переменном токе коэффициент мощности каждой фазы испытательной цепи следует определять каким-либо из способов, который указывают е протоколе испытания.

Два способа приведены в приложении F.

Коэффициент мощности многофазной цепи рассчитывают как среднее значение коэффициентов мощности каждой фазы.

Коэффициент мощности должен соответствовать значениям, указанным в таблице 16.

Разница между средним и максимальным и минимальным значениями коэффициентов мощности в отдельных фазах не должна выходить за пределы ± 0.05.

8.3.4.1.4 Постоянная времени испытательной цепи

На постоянном токе постоянную времени испытательной цели допускается определять методом в соответствии с приложением F. раздел F.2. Постоянная времени должна соответствовать значениям, указанным е таблице 16.

8.3.4.1.5 Калибровка испытательной цели

Для калибровки испытательной цепи временные соединения Вс мичтижно малым шанным сопротивлением помещают по возможности близко к выводам, предусмотренным для присоединения испытуемого аппарата.

На переменном токе сопротивления ft, и реакторы X регулируют так. чтобы при данном напряжении до включения обеспечить ток. равный номинальной наибольшей отключающей способности, и коэффициент мощности согласно 8.3.4.1.3.

Для определения по осциллограмме калибровки наибольшей включающей способности испытуемого аппарата калибруют цепь в расчете на достижение в одной из фаз ожидаемого тока включения.

Примечание — Напряжение до включения — это напряжение в разомкнутой цепи, необходимое для получения заданного возвращающегося напряжения (см. также 8.3.2.2.3, примечание 1).

На постоянном токе сопротивления ft, и реакторы X регулируют так. чтобы при данном испытательном напряжении обеспечить ток. максимальное значение которого равняется номинальной наибольшей отключающей способности, и постоянную времени по 8.3.4.1.4.

Ток одновременно подают во все полюса испытательной цели, и токовую характеристику записывают в течение не менее 0.1 с.

В коммутационных аппаратах постоянного тока контакты разъединяются до достижения пикового значения по калибровочной кривой. Калибровочной диаграммы, при наличии дополнительного активного сопротивления в цепи, достаточно для доказательства того, что скорость нарастания тока в амперах в секунду равна скорости нарастания испытательного тока при указанной постоянной времени (см. рисунок 15). Это дополнительное сопротивление должно быть таким, чтобы пиковое значение тока по калибровочной кривой по крайней мере равнялось пиковому значению тока отключения. Для самого испытания это сопротивление следует убрать [см. перечисление b) 8.3.4.1.8].

8.3.4.1.6 Методика испытания

После калибровки испытательной цепи по 8.3.4.1.5 временные соединения заменяют испытуемым аппаратом с соединительными кабелями (при их наличии).

Испытания на работоспособность в условиях короткого замыкания проводят согласно требованиям стандарта на аппарат конкретного вида.

6.3.4.1.7 Поведение аппарата во время испытаний на включение и отключение в условиях короткого замыкания

Не должны образовываться дуга, перекрытие между полюсами или между полюсами и корпусом, не должен расплавляться предохранитель F в цепи обнаружения утечки (см. 8.3.4.1.2).

Дополнительные требования могут содержаться в стандарте на аппарат конкретного вида.

8.3.4.1.8 Интерпретация записей

a) Определение напряжения до включения и возвращающегося напряжения

Напряжение до включения и возвращающееся напряжение определяют по записи, сделанной во время испытания на отключение конкретного испытуемого аппарата и оцененной в соответствии с рисунком 13 для переменного тока и рисунком 14 для постоянного тока.

Напряжение на входной стороне следует измерять в течение первого полного периода после гашения дуги во всех полюсах и подавления высокочастотных колебаний (см. рисунок 13).

Если требуется дополнительная информация, например о напряжении на контактах отдельных полюсов, времени дуги, энергии дугообразования. коммутационном перенапряжении и т. п.. ее можно получить с помощью дополнительных датчиков на каждом полюсе, причем сопротивление каждой такой измерительной цепи должно быть не ниже 100 Ом/В действующего значения напряжения на отдельных полюсах; данное значение должно быть внесено в протокол испытания.

b) Определение ожидаемого тока отключения

Ожидаемый ток отключения определяют сопоставлением токовых характеристик, полученных в период калибровки цепи и во время испытания аппарата на отключение (см. рисунок 13).

На переменном токе периодическая составляющая ожидаемого тока отключения предполагается равной действующему значению периодической составляющей тока калибровки в момент разъединения дугогасительных контактов [что соответствует на рисунке 13 а)]. Ожидаемый ток отключе

ния рассчитывают как среднее значение ожидаемых токов во всех фазах с допуском по таблице 8.

Ожидаемый ток в каждой фазе не должен отличаться более чем на ± 10 % номинального значения.

Примечание — По согласованию с изготовителем ток в каждой фазе не может отличаться болев чем на ± 10 % среднего значения ожидаемого токе.

На постоянном токе ожидаемый ток отключения считают равным максимальному значению А2. определенному по калибровочной кривой аппарата, отключающего ток до достижения им максимального значения, и значению А для аппарата, отключающего ток после прохождения максимума [см. рисунки 14 а) и 14 Ь)).

Испытание аппарата на постоянном токе, проверенного в соответствии с требованиями 8.3.4.1.5. когда калибровка испытательной цепи проводилась при токе /, ниже номинальной отключающей способности, считается недостоверным, если фактический ток отключения /2 выше, чем /,, и должно быть проведено повторно после калибровки при токе /3 более высоком, чем /2 (см. рисунок 15).

Ожидаемый ток отключения Л2 - UIR определяют путем расчета сопротивления R испытательной цепи на основании сопротивлений ft, соответствующих калибровочных цепей. Постоянную времени испытательной цепи определяют по формуле

di fat

Допуски должны соответствовать значениям, указанным в таблице 8.

с) Определение ожидаемого пикового тока включения

Ожидаемый пиковый ток включения определяют по калибровочной записи и считают равным А, [см. рисунок 13а)] на переменном токе и Д2 (см. рисунок 14) на постоянном токе. При испытаниях трехфазным током его приравнивают к наибольшему из трех значений А,. установленных по записи.

Примечание — При испытаниях однополюсных аппаратов ожидаемый пиковый ток включения, определяемый по калибровочной записи, может отличаться от фактического тока включения в ходе испытания из-за различия моментов включения.

8.3.4.1.9 Состояние аппарата после испытаний

После испытаний аппарат должен соответствовать требованиям стандарта на аппарат конкретного вида.

8.3.4.2 Наибольшая включающая и отключающая способности

Методика испытаний на проверку номинальной наибольшей включающей и отключающей способностей аппарата — в соответствии со стандартом на аппарат конкретного вида.

8.3.4.3 Проверка способности аппарата проводить номинальный кратковременно допустимый ток

Испытанию подвергают замкнутый аппарат при ожидаемом токе, равном номинальному кратковременно допустимому току, и соответствующем рабочем напряжении в общих условиях по 8.3.4.1.

Если затруднительно проводить такое испытание при рабочем напряжении, его разрешается проводить при любом удобном более низком напряжении. В этом случае фактический испытательный ток должен быть равен номинальному кратковременно допустимому току 1^, что должно быть оговорено в протоколе испытания. Но если в ходе испытания наблюдается кратковременный отброс контактов, испытание следует повторить при номинальном рабочем напряжении.

Для этого испытания следует заблокировать любой максимальный расцепитель тока (при наличии). способный сработать во время испытания.

а) Испытание на переменном токе

Данные испытания следует проводить при номинальной частоте тока с допускаемым отклонением ± 25 % и коэффициенте мощности, соответствующем номинальному кратковременно допустимому току в соответствии с таблицей 16.

Значение тока во время калибровки — среднее из действующих значений периодической составляющей во всех фазах (см. 4.3.6.1). Среднее значение действующего значения периодической составляющей должно быть равно номинальному значению в пределах допусков, указанных в таблице 8.

В каждой фазе ток не должен выходить за пределы ± 5 % номинального значения.

Если испытание проводят при номинальном значении рабочего напряжения, ток калибровки — ожидаемый ток, если испытание проводят при каком-либо более низком значении напряжения, ток считается фактическим испытательным.

Ток следует подавать е течение установленного времени, на протяжении которого действующее значение его периодической составляющей должно оставаться постоянным.

Примечание — С согласия изготовителя значение тока в каждой фазе может быть ± 10 % среднего значения при затруднениях испытательной станции.

Наибольшее пиковое значение тока на протяжении его первого периода должно быть не ниже л-кратного номинального значения кратковременно допустимого тока, где л соответствует соотношению по таблице 16.

При невозможности по каким-либо причинам выполнить эти требования допускаются другие значения тика при условии, что

где f,est — длительность испытания:

— постоянная времени:

— калибровочный ток. если периодическая составляющая не является постоянной или больше /w;

/ — фактический калибровочный ток. которому приписывается постоянная по значению составляющая.

Если на имеющемся источнике питания ток короткого замыкания убывает настолько, что за номинальное время невозможно получить номинальный кратковременно допустимый ток. не подавая изначально чрезмерно высокий ток. можно допустить уменьшение действующего значения этого тока за время испытания до уровня ниже установленного и соответственно увеличить длительность подачи тока при условии, что значение наибольшего пикового тока будет не менее установленного.

Если для достижения требуемого пикового тока действующее значение данного тока приходится увеличить до уровня выше установленного, следует соответственно сократить время проведения испытания.

b) Испытание на постоянном токе

Ток следует подавать в течение установленного времени, а его среднее значение, определенное по записи, должно быть равно по крайней мере заданному.

Если при испытании невозможно в течение заданного времени обеспечить соответствие данным требованиям, не подавая изначально чрезмерно высокий ток, допускается уменьшение значения этого тока за время испытания до уровня ниже установленного и соответствующее увеличение длительности с условием, чтобы максимальное значение этого тока было не меньше установленного.

Если невозможно проводить эти испытания на постоянном токе, то по соглашению между изготовителем и потребителем допускается проводить их на переменном токе, если принять нужные меры предосторожности для того, чтобы, например, пиковое значение тока не превышало допустимое.

c) Состояние аппарата во время и после испытания

Состояние аппарата во время испытания определяют в соответствии со стандартом на аппарат конкретного вида.

После испытания должно быть возможно оперирование аппаратом с применением нормальных органов управления.

8.3.4.4 Координация с устройствами для защиты от короткого замыкания и номинальный условный ток короткого замыкания

Условия и методика испытаний по применению должны быть изложены в стандарте на аппарат конкретного вида.

8.4 Испытания на ЭМС

Испытания на устойчивость к электромагнитным помехам и помехоэмиссию являются типовыми и должны проводиться согласно инструкциям изготовителя по монтажу со ссылкой на стандарты на ЭМС.

В стандарте на аппарат конкретного вида должны быть указаны дополнительные условия испытания (например, применение оболочки) и дополнительные меры для проверки аппарата на соответствие критериям работоспособности (например, выдержки времени).

8.4.1 Помехоустойчивость

8.4.1.1 Аппараты, не содержащие электронные цепи

Испытания не проводят. См. 7.3.2.1.

8.4.1.2 Аппараты, содержащие электронные цепи

8.4.1.2.1 Общие положения

Для аппаратов, содержащих электронные цепи, все компоненты которых пассивны (см. 7.3.2.2). испытания не проводят.

Критерии работоспособности, основанные на критериях соответствия, указанных в таблице 24. приведены в стандарте на аппарат конкретного вида.

8.4.1.2.2 Электростатические разряды

Испытания проводят по EEC 61000-4-2. используя значения по таблице 23. за исключением, если требуется и установлен е стандарте на аппарат конкретного вида другой уровень испытания.

Испытание повторяют 10-кратно в каждой измеряемой точке с минимальным интервалом между импульсами 1 с.

Испытательная установка — по рисунку 18.

8.4.1.2.3 Радиочастотные электромагнитные поля

Испытания проводят по EEC 61000-4-3. используя значения по таблице 23. за исключением, если требуется и установлен в стандарте на аппарат конкретного вида другой уровень испытания.

Испытательная установка — по рисунку 19.

Испытания проводят в два этапа:

этап 1 — испытание аппарата на устойчивость к нежелательному срабатыванию в полном диапазоне частот;

этап 2 — испытание аппарата на правильность при дискретных частотах.

На этапе 1 частота регулируется в диапазонах 80—1000 МГц и 1400—2000 МГц по IEC 61000-4-3 (раздел 8). Выдержка времени амплитудного модулятора на каждой частоте составляет от 500 до 1000 мс. если иное не установлено в стандарте на аппарат конкретного вида, размер шага составляет 1 % предыдущей частоты.

Фактическую выдержку времени указывают в протоколе испытаний.

На этапе 2 для проверки функциональных характеристик на дискретных частотах испытание проводят по стандарту на аппарат конкретного вида.

8.4.1.2.4 Наносекундные импульсные помехи

Испытания проводят по EEC 61000-4-4. используя значения по таблице 23 с частотой повторения 5 кГц. за исключением, если требуются и установлены в стандарте на аппарат конкретного вида другой уровень испытания и/или другая частота повторения.

Испытательная установка — по рисунку 20 для всех портов, кроме выводов сигнальной цепи.

Для испытания выводов сигнальной цепи все соединительные провода должны быть помещены в клещи емкостной связи при общей длине кабеля между генератором наносекундных импульсных помех и клещами не более 1 м.

8.4.1.2.5 Импульсы напряжения/тока

Испытания проводят по EEC 61000-4-5, используя значения по таблице 23 с учетом примечания d) к таблицам 2 и 3 IEC 61000-6-2.

Подаются импульсы как положительной, так и отрицательной полярности с предпочтительными значениями фазовых углов 0°. 90° и 270°.

Для каждой полярности и каждого фазового угла подают по пять импульсов с интервалом между двумя импульсами приблизительно 1 мин.

Для трехфазного аппарата с одинаковой конфигурацией цепи в каждой фазе испытание проводят только для одной фазы.

8.4.1.2.6 Кондуктивные помехи, наведенные радиочастотными электромагнитными полями

Испытания проводят по IEC 61000-4-6. используя значения по таблице 23.

Испытания проводят на аппарате без оболочки.

Помехи подают в линии питания с помощью развязывающего фильтра М1. М2 или М3, по обстоятельствам.

В линии сигнализации помехи подают с помощью развязывающего фильтра. При невозможности этого могут быть использованы электромагнитные клещи.

Индивидуальная испытательная установка по рисунку 21 или 22 должна быть описана в протоколе испытании.

Испытания проводят в два этапа:

этап 1 — испытание аппарата на устойчивость к нежелательному срабатыванию в полном диапазоне частот;

этап 2 — испытание аппарата на правильность при дискретных частотах.

На этапе 1 частота регулируется в диапазонах 150 кГц — 80 МГц по EEC 61000-4-6 (раздел 8). Выдержка времени амплитудного модулятора на каждой частоте составляет от 500 до 1000 мс. если иное не установлено в стандарте на аппарат конкретного вида; размер шага составляет 1 % предыдущей частоты.

Фактическую выдержку времени указывают в протоколе испытаний.

На этапе 2 для проверки функциональных характеристик на дискретных частотах испытание проводят пи стандарту на аппарат конкретного вида.

8.4.1.2.7 Электромагнитные поля промышленной частоты

Данное испытание проводят для аппаратов, содержащих устройства, чувствительные к электромагнитным полям промышленной частоты, определяемым стандартом на аппарат конкретного вида.

Методика испытания по IEC 61000-4-8. испытание проводят на аппарате без оболочки, если только он не предназначен для применения в специальной оболочке. Уровни испытания — по таблице 23. Поля прикладывают к аппарату в трех перпендикулярных направлениях (см. рисунок 23).

8.4.1.2.8 Динамические изменения напряжения электропитания

Данное испытание проводят для аппаратов, подверженным нежелательному срабатыванию при динамических изменениях напряжения электропитания.

Испытание проводят no IEC 61000-4*11. Испытуемый аппарат подсоединяют к испытательному генератору кратчайшим силовым кабелем, указанным изготовителем аппарата. Если длина кабеля не указана, выбирают самый короткий кабель, соответствующий назначению аппарата. Уровни испытаний приведены в таблице 23. при этом указанный процент означает процент номинального рабочего напряжения.

8.4.1.2.9 Гармоники в сети питания

На рассмотрении.

8.4.2 Помехоэмиссия

8.4.2.1 Аппараты, не содержащие электронные цепи

Испытания не проводят. См. 7.3.3.1.

8.4.2.2 Аппараты, содержащие электронные цепи

Стандарт на аппарат конкретного вида должен содержать методику испытаний. См. 7.3.3.2.

Таблица 1 — Номинальные значения поперечного сечения круглых медных проводников и приблизительное соотношение между системами мер (см. 7.1.8.2}

Номинальные поперечные сечения, мм*

Размер в системе AWGrttcml

Сечение e метрической системе, эквивалентное размеру е системе AWG/kcmM. мы2

0.20

24

0.205

0.34

22

0.324

0.50

20

0.519

0.75

18

0.820

1.00

1.50

16

1.300

2.50

14

2.100

4.00

12

3.300

6.00

10

5.300

10.00

8

8.400

16.00

6

13.300

25.00

4

21.200

35.00

2

33.600

1

42.400

50.00

0

53.500

70.00

00

67.400

95.00

000

85,000

0000

107.200

120

250 kcmil

127,000

150

300 kcmil

152.000

185

350 kcmil

177.000

400 kcmil

203.000

240

500 kcmil

253.000

300

600 kcmil

304.000

Примечания

1 Прочерк означает размер при оценке способности к присоединению (см. 7.1.8.2).

2 AWG — американский сортамент проводов — система идентификации проводов, где значения диаметров находятся в геометрической прогрессии между размерами 36 и 0000.

kcmil — единица измерения площади. 1000 круговых мил означает единицу площади круга — 1 kcmil =

= 0.50607 мм2.

Г0СТ1ЕС 60947-1—2017

Таблица 2 — Пределы превышения температуры выводов (см. 7.2.2.1 и 8.3.3.3.4J

Материал выводов

Пределы превышение температуры. •С1*-3)

Медь без покрытия

60

Латунь без покрытия

65

Медь или латунь, покрытые оловом

65

Медь или латунь, покрытые серебром или никелем

70

Прочие материалы

2)

Л При применении проводников значительно меньшего сечения, чем указано в таблицах 9 и 10. может про-

изойти перегрев деталей зажима, вывода и соседствующих частей аппарата, применение таких проводников

требует дополнительного согласования с изготовителем аппарата.

2> Пределы превышения температуры должны устанавливаться на основе опыта эксплуатации аналогия-

ных аппаратов или по результатам ислыгашя на износостойкость, но значение превышения температуры не должно превышать 65 °C.

В стандартах на аппараты конкретных видов могут быть установлены другие значения, исходя из уело-

вий истытаний и малых размеров аппаратов, но не превышающие более чем на 10 °C значений, приведенных в данной таблице.

Таблица 3 — Пределы превышения температуры доступных частей (см. 1.2.22. и 8.3.3.3.4)

Доступная часть

Пределы превышения температуры. *СО

Элементы для оперирования рукой или пальцем:

• металлические

15

• неметаллические

20

Части, доступные для прикосновения при оперировании, но не оперируемые рукой:

• металлические

30

• неметаллические

40

Части, при нормальном оперировании не доступные для прикосновения

Наружная поверхность оболочек близ ввода кабеля:

• металлическая

40

• неметаллическая

50

Наружные поверхности оболочек для сопротивлений

2002

Воздух, выбрасываемый из вентиляционных отверстий оболочек для сопротивлений

2002»

Я В стандартах на аппараты конкретных видов могут быть установлены другие значения, исходя из уело-

вий испытаний и малых размеров аппаратов, но не превышающие более чем на 10 °C значений, приведенных

в данной таблице.

21 Данный аппарат следует изолировать от контакта с горючими материалами или случайных приносно-

вений персонала. Предел 200 °C может быть превышен, если это допускается изготовителем. Необходимые

ограждения и место установки аппарата определяют при его монтаже. Изготовитель должен предоставить соот-

ветствующую информацию согласно 5.3.

Таблица 4 — Крутящие моменты для проверки механичесхой прочности резьбовых выводов (см. 8.2.4.2 ив.3.2.1)

Диаметр резьбы, мы

Крутящий момент при затягивании. Н м

Стандартное значение

Диапазон значений

1

II

III

1.6

До 1.6

0.05

0,1

0.1

2.0

Св. 1.6 до 2.0

0.10

0.2

0.2

2.5

Св. 2.0 до 2.8

020

0.4

0.4

3.0

Св. 2.8 до 3.0

025

0.5

0.5

Св. 3.0 до 3.2

0.30

0.6

0.6

Окончание таблицы 4

Диаметр резьбы, мы

Крутящий мвменг при затягивании. Н м

Стандартное значение

Диапазон значений

I

II

Ill

3.5

Св. 3.2 ДО 3.6

0.40

0.8

0.8

4.0

Св. Э,6до4.1

0.70

1.2

1.2

4.5

Св. 4.1 до 4.7

0.80

1.8

1.8

5.0

Св. 4.7 до 5.3

0.80

2.0

2.0

6.0

Св. 5.3 до 6.0

1.20

2.5

3.0

6.0

Св. 6.0 до 8.0

2.50

3.5

6.0

10.0

Св. 8.0 до 10.0

4.0

10.0

12.0

Св. 10,0 до 12.0

14,0

14.0

Св. 12.0 до 15.0

19.0

16.0

Св. 15.0 до 20.0

25.0

20.0

Св. 20.0 до 24.0

36.0

24.0

Св. 24.0

50.0

Примечание -

- Значения, приведенные в графе I. распространяются на винты без головок, в затяну-

том веде не выступающие из отверстий, и другие винты, которые не могут быть затянуты отверткой с лезвием

шириной более диаметра головки винта.

Значения, приведенные в графе II. распространяются на гайки и винты, затягиваемые отверткой.

Значения, приведенные в графе til. распространяются на гайки и винты, затягиваемые другим инструментом.

Таблица 5 — Испытательные параметры при испытаниях на изгиб и вытягивание круглых медных проводников {см. 8.2.4.4.1)

Поперечное сечение проводника

Диаметр отверстия в гильзе, мм^2!

Высота

Н1’. мы

Масса, ст

Тянущее усилие. Н

мм2

AWG/kanil

0.20

24

Л О

10

0.32

22

15

0,50

20

6.5

260

0,3

20

0,75

18

0.4

30

1.00

0.4

35

1.50

16

40

2.50

14

0,7

50

4.00

12

280

0.9

60

6.00

10

1.4

80

10.00

8

2.0

90

16.00

6

1*1 П

•алл

2.9

100

25.00

4

1 W.U

оии

4.5

135

3

14.5

320

5.9

156

35.00

2

6.8

190

Г0СТ1ЕС 60947-1—2017

Окончание таблицы 5

Поперечное сечение преемника

Диаметр отверстия в гипьэе. мм1*

Высота

Н1’, мм

Масса, ы

Тянущее усилие. Н

мм2

AWG/kcmil

1

15,9

343

8.6

236

50.00

0

9.5

70.00

00

19.1

368

10,4

285

95.00

000

14.0

351

0000

427

120.00

250

22.2

406

150.00

300

15.0

185.00

350

25,4

432

16.8

503

400

240.00

500

28.6

464

20.0

578

300.00

600

22.7

Допуски: на высоту Н± 15 мм, диаметр отверстия гильзы ± 2 мм.

2> Если гильза с указанным диаметром отверстия не обеспечивает пропускания проводника без заедания.

допускается использовать гильзу со следующим в сторону увеличения значением диаметра.

Таблица 6 — Параметры при испытаниях на вытягивание плоских медных проводников (см. 8.2.4.4.2)

Максимальная ширина плоских проводников, нм

Тянущее усилие. Н

12

100

14

120

16

160

20

180

25

220

30

280

Таблица 7 — Максимальные поперечные сечения проводников и размеры соответствующих калибров (см. 8.2.4.5.1)

Размеры в миллиметрах

Площадь поперечного сечения проводника, нм2

Калибр {см. рисунок 2)

гибкого

жесткого {одно- или многожильною)

Форма А

Форма В

Предельные отклонения по размерам 9. Ь

Марки*

POORS

Диаметр а

Ширина 6

Маркировка

Диаметр а

1.5

1.5

А1

2.4

1.5

В1

1.9

0

2.5

2.5

А2

2.8

2.0

В2

2.4

-0.05

2.5

4

АЗ

2.8

2.4

ВЗ

2.7

4

6

А4

3.6

3.1

В4

3.5

0

6

10

А5

4.3

4.0

В5

4.4

-0.06

10

16

А6

5.4

5.1

В6

5.3

16

25

А7

7.1

6.3

В7

6.9

0

25

35

А8

8.3

7.8

В8

8.2

-0.07

35

50

А9

10.2

9.2

В9

10.0

Окончание таблицы 7

Площадь поперечного сечения проводника. мм2

Калибр {см. рисунок 2)

гибкого

жесткого

{одно- ипи многожильного)

Форма А

Форма В

Продельные ОТХЛФненИЯ по размерам а. Ь

Марки*

робка

Диаметр а

Ширина Ь

Маркировка

Диаметр а

50

70

А10

12.3

11.0

В10

12.0

0

70

95

А11

14.2

13.1

В11

14,0

-0.08

95

120

А12

16,2

15.1

В12

16.0

120

150

А13

18.2

17.0

В13

18.0

150

185

А14

20.2

19.0

В14

20.0

185

240

А15

22,2

21.0

В15

22.0

0

240

300

А16

26.5

24.0

В16

26.0

-0.09

Примечание —

При значениях поперечных сечений проводников, отличающихся от указанных в

таблице, в качестве калибра можно использовать неподготовленный проводник соответствующего поперечного

сечения. При этом усилие ввода его в вывод не должно превышать 5 Н.

Таблица 7а — Соотношение между сечением и диаметром проводников

Сечение

проводнике

Теоретический диаметр наибольшего проводника

Метрический

AWGrtiemil

Жесткий проводник

Гибкий

Жесткий проводник

Гибкий проводник

мм2

Одно

жильный

Много*

жильный

Калибр

р)

Ь)

Класс В

с)

Классы 1. К. М

мм

Одножильный.

ыы

Многожильный.

мм

Многожильный.

мы

0.20

0.51

0.53

0.61

24

0.54

0.61

0.64

0.34

0.63

0.66

0.80

22

0.68

0.71

0.80

0.50

0.90

1.10

1.10

20

0.85

0.97

1.02

0.75

1.00

1.20

1.30

18

1.07

1.23

1.28

1.00

1.20

1.40

1.50

1.50

1.50

1.70

1.80

16

1.35

1.55

1.60

2.50

1.90

2.20

2.30®-'

14

1.71

1.95

2.08

4.00

2.40

2.70

2.90-”

12

2.15

2.45

2.70

6.00

2.90

3,30

3,90®)

10

2,72

3.09

3,36

10.00

3.70

4.20

5.10

в

3.43

3.89

4.32

16.00

4.60

5,30

6.30

6

4.32

4.91

5.73

25.00

6.60

7.80

4

5.45

6.18

7,26

35.00

7.90

9.20

2

6,87

7.78

9.02

50

9.10

11.00®)

0

9.64

12.08

70

11.00

13.10®)

00

11.17

13,54

95

12.90

15,10®)

000

12.54

15.33

0000

14.08

17.22

120

14,50

17.00®)

250

15,34

19.01

150

16.20

19.00®)

300

16.80

20.48

185

18,00

21,00®>

350

18.16

22.05

ГОСТ IEC 60947-1—2017

Окончание таблицы ?з

Сечение проводникя

Теоретический диаметр наибольшего проводника

Метрический

AWG.tcniil

Жесткий проводник

Гибкий

Жесткий проводник

Гибкий проводник

мм2

Одно

жильный

Много*

жильный

Калибр

Ь)

Ь)

Класс В

С)

Классы 1. К. М

мм

Одножильный.

ыы

Многожильный.

мм

Многожильный.

мы

400

19.42

24.05

240

20.60

24.00**

500

21.68

26,57

300

23.10

гт.оо»*

600

23.82

30.03

а> Размеры только гибких проводов класса 5 no IEC 60228А. ь> Номинальный диаметр с допуском + 5 %.

с> Наибольший диаметр любого из трех классов 1. К. М с допуском + 5 %.

Примечание — Диаметры наибольшего жесткого и гибкого проводников приведены по IEC 60228А (таблицы 1 и 3) и (ЕС 60344: калибры AWG — по ASTM-B 172-71(1]. ICEA S-19-81. Публикации NEMA (2]. 1СЕА S-66-524. Публикации NEMA (3]. ICEA S-66-516. Публикации NEMA [4].

Цифры в квадратных скобках относятся к разделу «Бибтография».

Таблица 8 — Предельные отклонения ислытагегъных параметров [см. 8.3.4.3 а)]

Все испытания

Испытания при нулевой и нормальней нагрузке и перегрузке

Испытание о условиях короткого замыкания

ТОК + 5 %

Напряжение {в т. ч. возвращающееся напряжение промышленной частоты) + 5 %

Коэффициент мощности ± 0,05

Постоянная времени + 15 %

Частота ± 5 %

Коэффициент мощности - 0.05 %

Постоянная времени + 25 %

Частота ± 5 %

Примечания

1 Указанные допуски не действительны, если в стандарте на аппарат конкретного вида установлены максимальные. минимальные или те и другие предельные отклонения.

2 По соглашению между изготовителем и потребителем испытания, проведенные при частоте 50 Гц. могут считаться действительными для оперирования при частоте 60 Гц. и наоборот.

Таблица 9 — Поперечные сечения медных проводников для испытательных токов до 400 А включительно {см. 8.3.3.3.4)

Диапазон испытательных токов11, А

Поперечное сечение проводников

мм2

AWG/kcmil

От 0 ДО 8

1.0

18

От 8 до 12

1.5

16

От 12до 15

2.5

14

От 15 д о 20

2.5

12

От 20 до 25

4.0

10

От 25 до 32

6.0

10

От 32 до 50

10

8

От 50 до 65

16

6

От 65 д о 85

25

4

От 85 до 100

35

3

От 100 до 115

35

250

От 115 до 130

50

300

От 130 до 150

50

350

От 150 до 175

70

400

От 175 до 200

95

500

От 200 до 225

95

2

От 225 до 250

120

1

Окончание таблицы 9

Диапазон испытательных токов’1. Л

Поперечное сечение проводников 2*- а' 4'

мм2

AWG/kcmil

От 250 до 275

Ог 275 до 300

Ог 300 до 350

Or 350 до 400

150

185

185

240

0

00

000

0000

Нижний предел диапазона испытательного тока должен превышать меньшее значение тока, указанного в таблице, а верхний предел — быть меньше или равным большему значению.

2> Для удобства испытания по соглашению с изготовителем допускается использовать проводники с меньшим поперечным сечением, чем указано в таблице для соответствующего диапазона испытательного тока.

Для проводов приведены размеры в метрической системе и в системе AWG/kcmil, а для шин — в миллиметрах и дюймах. Сравнение размеров метрической системы и системы AWG/kcmif приведено 8 таблице 1.

4) Для заданного диапазона испытателькях токов допускается использовать проводник любого из двух размеров. ухазанных для этого диапазона.

Таблица 10 — Поперечные сечения медных проводников для испытательных токов се. 400 и до 800 А включительно* (см. 8.3.3.34)

Диапазон испытательных токов”. А

Проводники21

Метрическая система

Система kemi

Количестве проводников, шт.

Поперечное сечение, мм2

Количество проводников, шт.

Размер ксглй

От 400 до 500 вхлюч.

150

о

250

От 500 до 630 вхлюч.

2

185

£

350

От 630 до 800 вхлюч.

240

3

300

* См. сноски к таблице 9.

Таблица 11 — Размеры медных шин для испытательных токов св. 400 до 3150 А включительно (см. 8.3.3.34)

Диапазон испытательных токов1'.

А

Шины2'

Число, шт.

Размеры, мм

Размеры, дюйм

От 400 до 500 вхлюч.

30x5

1.00x0.250

От 500 до 630 вхлюч.

40«5

1.25x0,250

От 630 до 800 вхлюч.

о

50 « 5

1.50*0,250

От 800 до 1000 включ.

60x5

2,00 х 0.250

От 1000 до 1250 вхлюч.

80x5

2,50 х 0.250

От 1250 до 1600 вхлюч.

100»5

3,00 * 0.250

От 1600 до 2000 вхлюч.

3

От 2000 до 2500 включ.

4

От 2500 до 3150 вхлюч.

3

100 х 10

6.00 х 0.250

’1 Нижний предел диапазона испытательного тока должен превышать меньшее значение тока, указанного в таблице, а верхний предел — быть меньше или равным большему значению.

2> Для удобства испытания по соглашению с изготовителем допускается использовать проводники с меньшим поперечным сечением, чем указано в таблице для соответствующего диапазона испытательного тока.

Для проводов приведены размеры е метрической системе и в системе AWG/kcmil, а для шин — е миллиметрах и дюймах. Сравнение размеров метрической системы и системы AWG/kcmif приведено в таблице 1.

41 Для заданного диапазона испытательных токов допускается использовать проводник любого из двух размеров. указанных для этого диапазона.

5> Предполагается, что шины устанавливают большей гранью по вертикали. Расположение большей гранью по горизонтали возможно по инструкции изготовителя.

В случае использования четырех шин их располагают попарно двумя группами с расстоянием между центрами групп не более 100 мм.

Г0СТ1ЕС 60947-1—2017

Таблица 12 — Выдерживаемые импульсные напряжения при испытаниях электрической прочности изоляции Напряжение в киловольтах

Номинальное импульсное выдерживаемое

напряжение.

Испытательное напряжение U, 2>so иа высо,в над уровнем моря, м

500

1000

2000

0.33

0.35

0.34

0.33

0.50

0.55

0.54

0.53

0.52

0.50

0.80

0.91

0.90

0.85

0.80

1.50

1.75

1.70

1.60

1.50

2.50

2.95

2.80

2,70

2.50

4.00

4.80

4,70

4.40

4.00

6.00

7.30

7,20

7,00

6,70

6,00

8.00

9. ВО

9.60

9.30

9.00

8.00

12,00

14.80

14.50

14.00

13,30

12.00

Примечание — В таблице используют характеристики однородного поля (см. 2.5.62, случай В).

Таблица 12а — Выдерживаемое напряжение при испытант электрической прочности изоляции в соответствии с номинальным напряжением изоляции

Напряжение в вольтах

Номинальное напряжение ИЗОЛЯЦИИ У/

Напряжение для испытания электрической прочности иэоляцпи

Действующее значение переменного тока

Напряжение постоянного тока21-

U{ S60

60 < и,- S 300

300 < Ц- $ 690

690 < U, S 800

800 < U, S 1000

1000 < Ц. S 15001»

1000

1500

1890

2000

2200

1415

2120

2670

2830

3110

3820

И Только для постоянного тока.

Испытательные напряжения — в соответствии с 60664-1:2007 (подпункт 6.1.3.4.1 пятый абзац).

При испытании допускается использовать только напряжение постоянного тока, если напряжение переменного тока не применимо.

См. также настоящий стандарт, перечисление Ь) я) 3) 6.3.3.4.1.

Таблица 13—Минимальные воздушные зазоры

Номинальное импульсное выдерживаемое напряжение Цпи>-

Минимальные воздушные зазоры, мм

Случай А

Неоднородное поле (см. 2.5.53)

Случай В.

Идеальное однородное попе {см. 2.5.52)

Степень загрязнения

1

2

3

4

1

2

3

4

0.33

0.01

0.2

0.8

1.6

0.01

02

0.8

1.6

0.50

0.04

0.04

0.80

0.10

0.1

1.50

0.50

0.5

0.3

2.50

1.50

1.5

0.6

4.00

3.00

3.0

1.2

6.00

5.50

5.5

2.0

8.00

8.00

8.0

3.0

12.00

14.00

14.0

4.5

Примечание — Значения минимальных воздушных зазоров рассчитаны для импульсного напряжения 1.2/50 мкс при барометрическом давлении 80 кПа. эквивалентном нормальному атмосферному давлению на высоте 2000 м над уровнем моря.

Таблица 14 — Испытательное напряжение на разомкнутых контактах аппаратов, пригодных для разъединения Напряжение а киловольтах

Номинальное импульсное выдерживаемое напряжение

Испытательные напряжения при 1/^здСРОтаетсгеенно высоте над уровнем моря

0 ы

200 м

500 м

1000 м

2000 м

0.33

0.50

1.8

1.7

1.6

1.5

0.80

1.50

2.3

2.2

2.0

2.50

3.5

3.4

3.2

3.0

4.00

6.2

6.0

5.8

5.6

5.0

6.00

9.8

9.6

9.3

9.0

8.0

8.00

12.3

12,1

11.7

11.1

10.0

12.00

18.5

18.1

17.5

16.7

15.0

Таблица 15 — Минимальные расстояния утечки

Минимальные расстояния утечки для аппаратов, испытывающих длительные тепловые нагрузки, мм

Материал печатных схем 1

Прочий материал

аппарата или эксплуатационное

Степень эатряэнения

напряжение переменного (действующее течение)

1

2

-

2

или постоянного тока°^с< В

Группы материалов

все

все.

«реме Ше

Все

I

II

III

10,0

0.025

0.040

0.080

0.40

0.40

0.40

12.5

0.025

0.040

0.090

0.42

0.42

0.42

16.0

0.025

0.040

0.100

0.45

0.45

0.45

20.0

0.025

0.040

0.110

0.48

0,48

0.48

25.0

0.025

0.040

0.125

0.50

0.50

0.50

32.0

0.025

0.040

0.140

0.53

0,53

0.53

40.0

0.025

0.040

0.160

0.56

0.80

1.10

50.0

0.025

0.040

0.180

0.60

0.85

1.20

63.0

0.040

0.063

0.200

0.63

0.90

1.25

80.0

0.063

0.100

0.220

0.67

0.95

1.30

100.0

0.100

0.160

0.250

0.71

1.00

1.40

125.0

0.160

0.250

0.280

0.75

1.05

1,50

160.0

0.250

0.400

0.320

0.80

1.10

1.60

200,0

0.400

0.630

0.420

1.00

1.40

2.00

250.0е»

0.560

1.000

0.560

1.25

1.60

2.50

Э20.0

0.750

1.600

0.750

1.60

2.20

3,20

400.0

1.000

2.000

1.000

2.00

2.80

4.00

Г0СТ1ЕС 60947-1—2017

Продолжение таблицы 15

Номинальное напряжение изоляции аппарате или эксплуатационное напряжение переменного (действующее значение) или постоянного тока6*е\ В

Минимальные расстояния утечки для аппаратов, испытывающих длительные тепловые нагрузки, мм

Материал печатных схем | Прочий материал

Степень загрязнения

1

- ■

Группы материалов

все

Все,

«роме

Все

I

II

111

500.0

1.300

2.500

1.300

2.50

3.60

5.00

630.0

1.800

3.200

1.800

3.20

4.50

6.30

600,0

2.400

4.000

2.400

4.00

5.60

8.00

1000.0

3.200

5.000

3.200

5.00

7.10

10.00

1250.0

4.200

6.30

9.00

12.50

1600.0

5.600

8.00

11.00

16,00

2000.0

7,500

10.00

14.00

20.00

2500.0

10.000

12.50

18.00

25.00

3200.0

12.500

16.00

22.00

32.00

4000.0

16.000

20.00

28.00

40.00

5000.0

20.000

25.00

36.00

50.00

6300.0

25.000

32.00

45.00

63.00

8000.0

32.000

40.00

56.00

80.00

10000.0

40.000

50.00

71.00

100.00

Номинальное напряжение изоляции аппарата или эксплуатационное напряжение переменного (действующее значение) или постоянного тека6^с\ в

Минимальные расстояния утечки для аппаратов, испытывающих длительные тепловые нагрузки, мм

Степень загрязнения

3 I

Группы материалов

I

II

шв | Ч1о

1

К

»'а

'•'в

10,0

1.00

1,00

1,00

1.6

1.6

1.6

12.5

1,05

1.05

1,05

1.6

1.6

1.6

16.0

1.10

1.10

1.10

1.6

1.6

1.6

20.0

1.20

1,20

1,20

1.6

1.6

1.6

25.0

1.25

1.25

1.25

1.70

1.70

1.70

32.0

1.30

1.30

1.30

1.80

1.80

1.80

40.0

1,40

1.60

1.80

1.90

2.40

3.00

50.0

1.50

1.70

1.90

2.00

2.50

3.20

63,0

1.60

1.80

2.00

2,10

2.60

Э.40

Окончание таблицы 15

Номинальное напряжение изоляции Аппарата ипи эксплуатационное напряжение переменного ■действующее значение) или постоянного то«а6^ с», в

Минимальные расстояния утечки для аппаратов, испытывающих длительные тепловые нагрузки, мм

Степень эатрязнения

3 I

Группы материалов

I

II

"'а | '“в

1

II

'»ь

60.0

1.70

1,90

2,10

2.20

2.80

3.60

100.0

1.60

2,00

2,20

2.40

3.00

3.80

125,0

1.90

2.10

2.40

2,50

3,20

4.00

160.0

2.00

2.20

2.50

3.2

4.0

5.0

200.0

2,50

2.80

3.20

4.0

5.0

6.3

250.0е»

3,20

3.60

4,00

5.0

6.3

8.0

320.0

4,00

4,50

5.00

6.3

8.0

10.0

400.0

5.00

5.60

6.30

8.0

10.0

12.5

500.0

6.30

7.10

8.00

10.0

12.5

16.0

630.0

8.00

9.00

10.00

12.5

16.0

20.0

а)

600.0

10.00

11.00

12.50

16.0

20.0

25.0

1000.0

12.50

14.00

16.00

20.0

25,0

32.0

1250,0

16,00

18.00

20.00

25,0

32.0

40.0

1600.0

20.00

22.00

25.00

32.0

40.0

50.0

2000.0

25.00

26.00

32.00

40.0

50.0

63.0

2500.0

32.00

36.00

40.00

50.0

63.0

80.0

3200.0

40.00

45.00

50.00

а)

63.0

80.0

100.0

4000.0

50.00

56.00

63.00

80.0

100.0

125.0

5000.0

63.00

71.00

80.00

100.0

125.0

160,0

6300.0

60.00

90.00

100.00

125,0

160.0

200.0

8000.0

100.00

110.00

125.00

160.0

200.0

250.0

10000.0

125.00

140.00

160.00

200.0

250.0

320.0

а» Для этих материалов значения расстояний утечки не установлены. Группа материалов IНо не рекомендуется для применения при степени загрязнения 3. если напряжение свыше 630 В. и при степени загрязнения 4.

ь» В порядке исключения при номинальных напряжениях изоляции 127. 206. 415/440. 660/690 и 830 В можно испогъзовать расстояния утечки, соответствующие более низким значениям 125, 200. 400. 630 и 600 В соответственно.

е» Знамения расстояний утечки, указанные для 250 В, можно использовать для 230 В ± 10 %.

Примечания

1 Обычно при эксплуатационных напряжениях 32 В и ниже на изоляции отсутствуют следы токов утечки или эрозии. Однако следует учитывать возможность электролитической коррозии, поэтому рекомендуются минимальные расстояния утечки.

2 Значения напряжения выбраны из ряда R,q предпочтительных чисел.

Таблица 16 — Значения коэффициентов мощности и постоянных времени в зависимости от испытательных токов и соотношения л между пиковым и действующим значениями тока (cu. 8.3.4.3 а)]

Испытательный ток Л А

Коэффициент мощности

Постоянная времени. нс

Соотношение о

1 S 1500

0.95

1.41

1500 < Z $3000

0.90

1.42

3000< Z $4500

0.80

5

1.47

4500< / $6000

0.70

1.53

6000 < Z $10000

0.50

1.70

10 000< Z $20 000

0.30

10

2.00

20000< / $50000

0,25

2.10

50 000 < Z

0.20

Ю

2.20

Таблица 17 — Испытательное управляющее усилие, которому подвергают органы управления (см. 8.2.5.2.1)

Тип органа управления*

Испытатель» нос усилие*

Минимальное испытательное усилие. Н

Максимальное испытательное усилие. Н

Нажимная кнопка [рисунок 16 а)]

3F

50

150

Оперируемый одним пальцем [рисунок 16 Ь)]

Оперируемый двумя пальцами [рисунок 16 с)]

100

200

Оперируемый одной рухой [рисунки 16 d) и в)]

150

400

Оперируемый двумя руками [рисунки 16 f) и д)]

200

600

* F — нормальное управляющее усилив органа управления в новом сосгоянш. прикладывают испытательное усилие 3F с минимальным и максимальным значениями, как показано на рисуже 16.

Таблицы 18,19 — свободны.

Примечание — Нумерация таблиц принята аналогичной нумерации таблице международном стандарте. Таблица 20 — Значения для испытаний на вытягивание металлических труб для проводников (см. 8.2.7.1)

Режимы применения труб по 1£С 60981

Диаметр труб, мм

Вытягивающее усилие. Н

■нутреиний

наружный

12 Н

12.5

17.1

900

От16Ндо41Н

От 16.1 ДО 41.2

От 21.3 до 48.3

От 53 Н до 155 Н

От 52.9 до 154.8

От 60.3 до 168,3

Таблица 21 — Значения для испытаний груб на изгиб (см. 8.2.7.2J

Режимы применения труб no IEC 60981

Диаметр труб, мм

Нагибающий момент.

Н ы

внутренняя

наружный

12 Н

12.5

17.1

351>

От16Ндо41 Н

От 16.1 до 412

От 21,3 до 48.3

70

От 53 Н до 155Н

От 52.9 до 154.8

От 60,3 до 168.3

Даннов значение понижается до 17 Н - м для оболочек, имеющих оснащение только для входных груб.

Таблица 22 — Значения для испытаний металлических труб на кручение (см. 8.2.7.1 и 8.2.7.3)

Режимы применения труб по IEC 60М!

Диаметр труб, мм

Крутящий момент.

Н ы

внутренний

наружный

12 Н

12.5

17.1

90

От 16 Н до 41 Н

От 16.1 до 41.2

От 21.3 до 48.3

120

От 53 Ндо 155Н

От 52.9 до 154.8

От 60.3 до 168.3

180

Таблица 23 — Испытания на ЭМС. Устойчивость к электромагнитным помехам {см. 8.4.1.2)

Тип испытания

Требуемый уровень жесткости

Испытание на устойчивость к электростатическим разрядам по IEC 61000-4-2

8 кВ/воздушный разряд или

4 кВ/конгактный разряд

Испытание на устойчивость к излучаемым радиочастотным электромагнитным полям (от 80 МГц до 1 ГГц) по IEC 61000-4-3

ЮВ/м

Истытание на устойчивость к излучаемым радиочастотным электромагнитным полям (от 1.4 до 2 ГГц) по IEC 61000-4-3

ЗВ/м

Испытание на устойчивость к излучаемым радиочастотным электромагнитным полям (от 2 до 2.7 ГГц) по IEC 61000-4-3

1В/м

Исгытание на устойчивость к импульсным наносекундньм помехам по IEC 61000-4-4

2 кВ/5 кГц со стороны питания

1 кВ/5 кГц со стороны вывода сигнальной цепи

Испытание на устойчивость к импульсам напряжения/тока 1,2/50—8/20 мкс^по IEC 61000-4-5

2 кВ (фаза — земля)

1 кВ {между фазами)

Испытание на устойчивость к кондуктиеным радиочастотным помехам (от 150 кГц до 80 МГц) по IEC 61000-4-6

10 В

Испытание на устойчивость к электромагнитным полям промышленной частоты61 по IEC 61000-4-8

ЗОА/м

Исгыгание на устойчивость к падению напряжения (50/60 Гц) nolEC 61000-4-11*)

Класс 2е)- Л*)

0 % за 0,5 цикла и 1 цикл

70 % за 25/30 циклов

Класс 3е*

0 % за 0.5 цикла и 1 цикл

40 % за 10/12 циклов

70 % за 25/30 циклов

80 % за 250/300 циклов

Испытание на устойчивость к кратковременным перерывам в подаче напряжения по IEC 61000-4-11

Клэосг6)^*1

0 % за 250/300 циклов

Класс 3е1 *>•«)

0 % за 250/300 циклов

Испытание на устойчивость к гармоникам 8 сетях литания по IEC 61000-4-13

Требования отсутствуют11

Примечание — Критерии работоспособности приведены в стандарте на аппарат конкретного вида, они основаны на критериях соответствия, приведенных в таблице 24.

а> Применение см. 7.2 и 8.2 IEC 61000-4-5. Не испотъзуют для вводов/выходов £ 60 В постоянного тока, если вторичные цепи (изолированные от сетей переменного тока) не подвергаются переходным перенапряжениям.

ь> Применяют только для аппаратов, содержащих компоненты, чувствительные к действию электромагнитных полей промышленной частоты (см. 8.4.1.2.7).

с1 Данный процент относится к номинальному рабочему напряжению, например 0 % означает 0 В. d> Класс 2 относится к точкам общего соединения и внутрисистемным точкам общего соединения промышленных сред.

Класс 3 относится только к внутрисистемным точкам общего соединения промышленных сред. Этот класс рассматривают, если основная часть нагрузки запитана через преобразователи: в случае сварочного оборудования: мощных двигателей с частыми пусками или быстро меняющимися нагрузками.

Класс должен быть указан в стандарте на аппарат конкретного айда.

*) Значение перед дробью относится к испытаниям при частоте 50 Гц. значение после — при 60 Гц. Требования — предмет будущего рассмотрения.

Таблица 24 — Критерии соответствия при наличии электромагнитных помех

Функция

Критерии соответствия (критерии работоспособности при ислытвмиях)

А

В

С

Общая работоспособность

Отсутствие заметных изменений рабочих характеристик

Временная деградация или потеря работоспособности, которая самовосстанавгн-

еается

Временная деградация или потеря работоспособности, если требуется вмешательство оператора или переустановка системы11

Функционирование силовых цепей и целей управления

Нормальное функционирование

Временная деградация или потеря работоспособности, которая самовоостанааш-вается1*

Временная деградация или потеря работоспособности, если требуется вмешательство оператора или переустановка системы11

Работа дисплеев и панелей управления

Отсутствие изменений в информации на дисплее.

Временные видимые изменения или потеря информации.

Отключение или постоянное погасание дисплея.

Легкие флуктуации светодиодов или легкое дрожание изображения

Непредусмотренное свечение светодиодов

Искажение информации и/или переход 8 незапланированный режим, что очевидно либо следует из предусмотренной индикации.

Отсутствие самовосстановления

Обработка и считывание информации

Связь, свободная от помех, и обмен данными с внешними источниками

Временные помехи в связи с внутренними и внешними источниками с возможными сообщениями об ошибках связи

Неправильная обработка информации.

Потеря данных и/ипи информации.

Ошибки в связи.

Отсутствие самовосстановления

1| Особые требования должны содержаться а стандарте на аппарат конкретного вида

Т — узвп фиксации, 2 — гильза/ 3 — диск. 4 — груз Рисунок 1 — Установка для испытания проводников на изгиб (см. 8.2.4.3 и таблицу S)

Рисунок 2 — Калибры формы А и В (см. в.2.4.5.2 и таблицу 7}

S — источники питания. l?rt, U,f — датчики напряжения. V — вольтметр. F — плавкий элемент (&.3.3.S.2. перечисление g)|; Z — цепь нагрузки {вы. рисунок в): Rt — токоограничиавющие сопротивления; D — испытуемый аппарат |с присоединенными проводниками). В — перемычки для настройки контура. Т — точка

мэемления (на стороне нагрузки или питания), Г( — датчик тока

Примечание — Пунктиром обозначен металлический экран или оболочка.

Рисунок 3 — Схема испытательной цели для проверки включающей и отключающей способностей однополюсного аппарата в однофазной цели переменного игы постоянного тока (см. в.Э.3.5.2)

S — источник питания. lt,i. U^. и,$ — датчики напряжения. V — вопьтыегр. IV нейтраль (искусственная):

F — плавкий элемент {В.З.Э.6.2. перечисление g}); Z — цепь матруэки (см рисунок в); — токоограничиоающие

сопротивление; О — испытуемый аппарат (с присоединенными проводниками). 12— датчики тока: В — перемычки для настройки контура; Г •— точка заэеыпения (на стороне натруми или питания)

Примечание — Пунктиром обозначен металлический экран или оболочка.

’• могут альтернативно присоединяться между фазой и нейтралью.

2) Если аппарат предназначен для применения в фазно-заземленных системах или если данную схему применяют для испытания нейтрали и смежного с ней полюса чвтьфвхлолюсного аппарата. F следует присоединять к одной фазе источника питания.

На постоянном токе F следует присоединять к отрицательному полюсу источника питания.

•** в США и Канаде F следует присоединять:

- к одной фазе источника питания для аппарата, маркированного единственным значением Ue;

• к нейтрали для аппарата, маркированного двойным напряжением (см. примечание к 5.2).

Рисунок 4 — Схема испытательной цели для проверки включающей и отключающей способностей двухполюсного аппарата в однофазной цепи переменного или постоянного тока (см. 8.3.3.5.2)

3

«л.


ГТиИ

г-п

1 Ца|

—» 1


_I к”



S — источник питания: U,\,U,g. U,.^, 1/,д. U$. О,£~ джчики напряжения: V— вольтметр: N— нейтраль (искусственная); F — плавкий элемент |см. £.3.3.5.2. перечисление 9)). в — перемычки для настройки контура; 2 ~ цепь нагрузки (см рисунок в): ffL — токоограиичиеаещие сопротивления. О — испытуемый аппарат (с присоединенными проводниками); J,. fj. (3 — датчики тока; Г — точка заземления (на стороне натрузки или питания)

Примечание — Пунктиром обозначен металлический экран или оболочка.

’• Uf1, Uv. U# могут альтернативно присоединяться мвжру фазой и нейтралью:

2) Если аппарат предназначен для применения а фазно-заземленных системах или если данную схему применяют для испытания нейтрали и смежного с ней полюса четырехлолюсного аппарата. F следует присоединять к одной фазе источника питания. На постоянном токе F следует присоединять к отрицательному полюсу источника литания.

•** в США и Канаде F следует присоединять:

- к одной фазе источника питания для аппарата, маркированного единственным значением Ue;

• к нейтрали для аппарата, маркированного двойным напряжением (см. примечание к 5.2).

Рисунок 5 — Схема испытательной цели для проверки включающей и отключающей способностей трехполюсного аппарата (см. 8.3.3.5.2)

S— источник питания, t),,. U,g. U#. U^. U.p. — датчики напряжения. V — вольтметр: H— нейтраль (искустоенная нейтраль): F — плавкий элемент (см. 8.3.3 5.2. перечисление д)|. в — перемычки для настройки контура: 2 — цепь нагрузки (см. рисунок 8): Rt — токоотраничивающие сопротивления. О — испытуемый аппарат |с присоединенными проводниками); /|. tj. (3 — датчики тока. Т — точка заземления (на стороне нагрузки или питания). С^. Cj — соединения с точкой заземления


Примечание — Пунктиром обозначен металлический экран или оболочка.

11 Ufy, U& U& могут альтернативно присоединяться между фазой и нейтралью.

Рисунок 6 — Схема испытательной цели для проверки включающей и отключающей способностей четырехполюсного аппарата (см. 8.3.3.5.2)

Рисунок 7 — Схема возвращающегося напряжения на контактах первой отключаемой фазы в идеальных условиях (см. 8.3.3.5.2. перечисление е)|


Маиакг нулевого том


94

1

’> Действует IEC 60068-1:2013 «Испытание на воздействие внешних факторов. Часть 1. Общие положения и руководство». Однако для однозначного соблюдения требования настоящего стандарта, выраженного в датированной ссылке, рекомендуется использовать только указанное в этой ссылке издание.

2| Действует IEC 60068-2-1:2007 «Испытания на воздействия внешних факторов. Часть 2-1. Испытания. Испытания А Холод». Однако для однозначного соблюдения требования настоящего стандарта, выраженного в датированной осыпке, рекомендуется использовать только указанное в этой ссылке издание.

3| Действует IEC 60068-2-2:2007 «Испытания на воздействие внешних факторов. Часть 2. Испытания. Испытание В: Сухов тепло». Однако для однозначного соблюдения требования настоящего стандарта, выраженного в датированной ссылке, рекомендуется использовать только указанное в этой осылке издание.

4| Действует IEC 60068-2-6:2007 «Испытания на воздействие внешних факторов. Часть 2. Испытания. Испытание Fc: Вибрация (синусоидальная)». Однако для однозначного соблюдения требования настоящего стандарта, выраженного в датированной ссылке, рекомендуется использовать только указанное в этой ссылке издание.

2

” Действует IEC 60085:2007 «Электрическая изоляция. Классификация по термическим свойствам». Однако для однозначного соблюдения требования настоящего стандарта, выраженного в датированной ссылке, рекомендуется использовать только указанное в этой ссылке издание.

Действует IEC 60092-504:2016 «Электроустановки на морских судах. Часть 504. Специальные требования. Управление и инструментарий». Однако для однозначного соблюдения требования настоящего стандарта, выраженного в датированной ссылке, рекомендуется использовать только указанное в этой ссылке издание.

J| Действует 1ЕС 60112:2009 «Материалы электроизоляционные твердые. Методы определения нормативного и сравнительного индексов трекингостойкости». Однако для однозначного соблюдения требоважя настоящего стандарта, выраженного в датированной ссылке, рекомендуется испотъэовать только указанное в этой ссылке издание.

4| Действует IEC 60269-1:2014 «Предохранители плавкие низковольтные. Часть 1. Общие требования». Однако для однозначного соблюдения требования настоящего стандарта, выраженного в датированной ссылке, рекомендуется использовать только указанное 8 этой ссылке издание.

3

* Действует IEC 60269-2:2016 «Предохранители плавкие низковольтные. Часть 2. Дополнительные требова

4

ния к плавким предохранителям, используемым квалифицированным персоналом». Однако для однозначного со

5

блюдения требования настоящего стандарта, выраженного в датированной осытке, рекомендуется использовать

6

только указанное в этой осыпка издание.

7

в| Действует IEC/TR 60344:2007 «Расчет электрического сопротивления постоянного тока медных прово

8

дников с покрытием и без него для низкочастотных кабелей и проводов. Руководство по применению». Однако для

9

однозначного соблюдения требования настоящего стандарта, выраженного в датированной ссылке, рекомендует

10

ся использовать только указанное в этой ссылке издание.

11

11 «ОВ» означает, что стандарт в электронной версии доступен 8 базе стандартов на сайте IEC.

12

21 Действует IEC 60445:2010 «Интерфейс человек — машина, маркировка, идентификация. Основные принципы и принципы безопасности. Идентификация выводов, концов проводов и проводников электрооборудования». Однако для однозначного соблюдения требования настоящего стандарта, выраженного в датированной ссылке, рекомендуется использовать только указанное в этой ссылке издание.

13

Действует IEC 60529:2013 «Степени защиты, обеспечиваемые корпусами (Код IP)». Однако для однозначного соблюдения требования настоящего стандарта, выраженного в датированной ссылке, рекомендуется использовать только указанное в этой ссылке издание.

14

> «DS» означает, что стандарт в электронной версии доступен в базе стандартов на сайте IEC.

15

1 Действует IEC 60664-3:2010 «Координация изоляции для оборудования в низковольтных системах.

Часть 3. Использование покрытия, герметизации или заливки для защиты от загрязнения». Однако для однозначного соблюдения требования настоящего стандарта, выраженного е датированной ссылке, рекомендуется использовать только указанное в этой ссылке издание.

16

в| Действует IEC 60695-2-10:2013 «Испытание на пожарную опасность. Часть 2-10. Методы испытания с применением накаленной/нагретой проволоки. Аппаратура и общие положения методики испытания накаленной проволокой». Однако для однозначного соблюдения требования настоящего стандарта, выраженного в датированной ссылке, рекомендуется использовать только указанное в этой ссылке издание.

17

7| Действует IEC 60695-2-11:2014 «Испытания на пожароопасность. Часть 2-11. Методы испытаний раска-ленной/горячей проволокой. Метод испытания конечной продукции на воспламеняемость под действием раскаленной проволоки». Однако для однозначного соблюдения требования настоящего стандарта, выраженного в датированной ссылке, рекомендуется использовать только указанное в этой ссылке издание.

18

’• Действует IEC 60695-11-10:2013 «Испытания на пожароопасность. Часть 11-10. Пламя для испытания. Методы испытания горизонтальным и вертикальным пламенем 50 Вт». Однако для однозначного соблюдения требования настоящего стандарта, выраженного в датированной ссылке, рекомендуется использовать только указанное в этой ссылке издание.

21 Действует IEC 60947-5-1:2016 «Аппаратура коммутационная и механизмы управления низковольтные комплектные. Часть 5-1. Устройства и коммутационные элементы целей управления. Электромеханические устройства цепей управления». Однако для однозначного соблюдения требования настоящего стандарта, выраженного в датированной ссыпке, рекомендуется использовать только указанное в этой ссылке издание.

'*1 Действует IEC 60947-6:2011 «Аппаратура коммутационная и механизмы управления низковольтные комплектные. Часть в. Блоки управления для встроенной термической защиты для вращающихся электрических машин». Однако для однозначного соблюдения требования настоящего стандарта, выраженного 8 датированной ссылке, рекомендуется использовать только указанное в этой ссылке издание.

19

Действует IEC 610004-3:2010 «Электромагнитная совместимость. Часть 4-3. Методики испытаний и измерений. Испытание на устойчивость к воздействию электромагнитного поля с излучением на радиочастотах». Однако для однозначного соблюдения требования настоящего стандарта, выраженного в датированной ссылке, рекомендуется использовать только указанное в этой ссылке издание.

2| Действует IEC 610004-5:2014 «Электромагнитная совместимость. Часть 4. Методики испытаний и измерений. Раздел 5. Испытание на невосприимчивость к выбросу напряжения». Однако для однозначного соблюдения требования настоящего стандарта, выраженного в датированной ссылке, рекомендуется использовать только указанное е этой ссылке издание.

31 Действует IEC 610004-13:2015 «Электромагнитная совместимость. Часть 4-13. Методики испытаний и измерений. Испытания низкочастотной помехозащитное™ от воздействия гармоник и промежуточных гармоник, включая сетевые сигналы, передаваемые в сеть переменного тока». Однако для однозначного соблюдения требования настоящего стандарта, выраженного в датированной ссылке, рекомендуется использовать только указанное в этой ссыпке издание.

41 Действует 1ЕС 61000-6-2:2016 «Эпектромальпная совместимость. Часть 6-2. Общие стандарты. Невосприимчивость к промышленной окружающей среде». Однако для однозначного соблюдения требования настоящего стандарта. выраженного в датированной ссылке, рекомендуется использовать только указанное в этой ссылке издание.

91 Действует IEC 61131-2:2007 «Микроконтроллеры программируемые. Часть 2. Требования к оборудованию и испытания». Однако для однозначного соблюдения требования настоящего стандарта, выраженного в датированной ссылке, рекомендуется использовать только указанное в этой ссылке издание.

Действует 1ЕС 61140:2016 «Защита от поражения электрическим током. Общие аспекты, связанные с электроустановками и электрооборудованием». Однако для однозначного соблюдения требования настоящего стандарта. выраженного в датированной ссылке, рекомендуется использовать только указанное в этой ссылке издание.

20

11 Действует IEC 62061:2015 «Безопасность в машиностроении. Функциональная безопасность электрических. электронных и программируемых электронных систем, связанных с безопасностью». Однако для однозначного соблюдения требования настоящего стандарта, выраженного в датированной ссылке, рекомендуется использовать только указанное в этой ссылке издание.

21

> Действует 1EC/TR 62474-1:2015 «Декларация относительно продукции компаний, работающих в электротехнической промышленности и поставляющих продукцию для этой промышленности. Честь 1. Руководство по внедрению IEC 62474». Однако для однозначного соблюдения требования настоящего стандарта, выраженного в датированной осыпке, рекомендуется использовать только указанное е этой ссылке издание.

3) Действует CISPR 11:2016 «Оборудование промышленное, научное, медицинское. Характеристики радиочастотных помех. Пределы и методы измерений». Однако для однозначного соблюдения требования настоящего стандарта. выраженного в датированной ссылке, рекомендуется использовать только указанное в этой ссылке издание.

4| Действует ISO 13849-1:2015 «Безопасность машин. Детали систем управления, связанные с обеспечением безопасности. Часть 1. Общие принципы проектирования». Однако для однозначного соблюдения требования настоящего стандарта, выраженного в датированной ссылке, рекомендуется использовать только указанное в этой ссылке издание.

22

Определение характеристики приводится в стандарте на конкретный аппарат.