allgosts.ru07. МАТЕМАТИКА. ЕСТЕСТВЕННЫЕ НАУКИ07.040. Астрономия. Геодезия. География

ГОСТ 25645.302-83 Расчеты баллистические искусственных спутников Земли. Методика расчета индексов солнечной активности

Обозначение:
ГОСТ 25645.302-83
Наименование:
Расчеты баллистические искусственных спутников Земли. Методика расчета индексов солнечной активности
Статус:
Действует
Дата введения:
01/01/1985
Дата отмены:
-
Заменен на:
-
Код ОКС:
07.040

Текст ГОСТ 25645.302-83 Расчеты баллистические искусственных спутников Земли. Методика расчета индексов солнечной активности

БЗ 3-96

ГОСУДАРСТВЕННЫЙ СТАНДАРТ

СОЮЗА ССР

РАСЧЕТЫ БАЛЛИСТИЧЕСКИЕ ИСКУССТВЕННЫХ СПУТНИКОВ ЗЕМЛИ

МЕТОДИКА РАСЧЕТА ИНДЕКСОВ СОЛНЕЧНОЙ АКТИВНОСТИ

ГОСТ 25645.302-83

Издание официальное

ИПК ИЗДАТЕЛЬСТВО СТАНДАРТОВ Москва

УДК 551.511.001.24:006.354

ГОСУДАРСТВЕННЫЙ

СТАНДАРТ

СОЮЗА

Группа Т37

ССР

РАСЧЕТЫ БАЛЛИСТИЧЕСКИЕ ИСКУССТВЕННЫХ СПУТНИКОВ ЗЕМЛИ

Методика расчета индексов солнечной активности

Artificial Earth satellite ballistic computations. Solar activity indexes calculation methods

ГОСТ

25645.302—83

ОКСТУ 0Ш

Дата введения 01.01.85

Настоящий стандарт устанавливает методику расчета индексов солнечной активности (W и F\oj ) для интервалов времени прогнозирования условий движения искусственных спутников Земли (ИСЗ) от 4 мес до 11 лет при проведении проектных баллистических расчетов.

Термины, применяемые в настоящем стандарте, и пояснения к ним приведены в приложении 1.

1. ОСНОВНЫЕ ПОЛОЖЕНИЯ

1.1. Изменения солнечной активности, характеризуемые индексами солнечной активности, приняты циклическими со средней длиной периода 11 лет. Продолжительность 11-летнего цикла солнечной активности (далее 11-летний цикл) установлена по времени между минимумами 11-летних циклов.

За начало первого 11-летнего цикла принят 1755 год.

1.2. Индексы солнечной активности:

W —число Вольфа (относительное число солнечных пятен, определяемое ежесуточно);

W —значение W, осредненное на интервале времени прогнозирования( далее интервал прогнозирования), квартал,год; _

WK* — среднеквартальное значение W\

Wгод — среднегодовое значение W\

F\о,7 —индекс солнечной активности, равный плотности потока радиоизлучения Солнца на длине волны 10,7 см (на частоте 2800 МГц), 10~22 Вт/(м2-Гц) (измеряется ежесуточно);

F,о,7 —прогнозируемый средний уровень солнечной активности, осредненный на интервале прогнозирования, квартал, год, 10~22 Вт/ (м2-Гц);

р КВ р

г ю,7—среднеквартальное значение г 10,7;

/То} — среднегодовые значения F\0,7;

F0 —фиксированное значение Fюл за рассматриваемый интервал времени (далее фиксированный уровень солнечной активности), 10~22 Вт/(м2-Гц).

Примечание. Значения W и Т7 ю 7 отнесены к середине интервала прогнозирования этих величин.

1.3. Значения F\*$ox определяют по формуле (1) в зависимости от интервала прогнозирования, квартал, год;

F'^r-aWm-\-b, (1)

где а=0,895.10-22-Вт/(м2-Гц), й = 61,17.1()222.Вт/(м2.Гц),

кв и W™* —определяют по методикам, приведенным в разд. 2 данного стандарта.

Издание официальное Перепечатка воспрещена

* © Издательство стандартов, 1983

© ИПК Издательство стандартов, 1997 © Переиздание с Изменениями

Изменение в пределах

1.4. Изменение №год в пределах 11-летнего цикла, приведенное на черт. 1, характеризуют следующие параметры:

Wm*\ —минимальное и максимальное Й7Г0Л в цикле;

W™1 — минимальное значение Wr0J в цикле, следующем за данным циклом;

Wm+k\ Wu+ь —значения W .отстоящие от минимума на k лет (для ветви роста 6=1, 2, 3, для ветви спада 6 = 1, ,2, ..., 7);

ею

W —среднее значение числа Вольфа за цикл;

2И7Г0Д — сумма W?n за цикл;

tm\ моменты времени, соответствующие минимуму и максимуму 11-летнего цикла, год;

tm —-момент времени, соответствующий минимуму следующего 11-летнего цикла, год; tm+k] tn+k — моменты времени, отстоящие от минимума и максимума на 6 лет (для ветви роста 6 = 1, 2, 3, для ветви спада 6=1, 2, ..., 7), год; t* —интервал времени между моментами tm и tu (длина ветви роста), год; т —интервал времени между моментами tu и tm (длина ветви спада), год;

Т —продолжительность 11 -летнего цикла между im и tm , год.

1.5 Примеры расчета индексов солнечной активности на 21-й (1976—1987 гг.), 22-й (1987—1998 гг.) и 23-й (1998—2009 гг.) 11-летние циклы приведены в приложений 2.

1.6. Средние значения индексов геомагнитной активности для различных фаз солнечной активности приведены в приложении 3.

1.7. Изменение индексов солнечной и геомагнитной активностей за весь период наблюдений приведено в приложении 4.

2. МЕТОДИКИ РАСЧЕТА ИНДЕКСОВ СОЛНЕЧНОЙ АКТИВНОСТИ

2.1. Методика расчета с р е д н е к в а рта л ьн ы_х чисел Вольфа

2.1.1. Для расчета среднеквартальных чисел Вольфа (W1115 ) необходимо иметь в качестве исходных данных значения: Wm, Wu и соответствующие им tm и tM с точностью до квартала.

2.1.2. Расчет WKa следует производить по методу регрессий и модифицированному методу средних кривых^

Значения по методу регрессий определяют из уравнений линейных регрессий, приведен

ных в табл. 1 (для ветви роста 11-летнего_цикла) и в табл. 2 (для ветви спада 11-летнего цикла), при этом каждое последующее значение 1S7ib вычисляют через предыдущее значение по уравнению линейной регрессии. Рядом с уравнением линейной регрессии приведены соответствующие нм коэффициенты корреляции r-ф и, определяющие качество линейного приближения, и получаемые при этом

средние квадратические отклонения с-^кв.

2.1.3. Значения WF по модифицированному методу средних кривых вычисляют по формуле (2) (для ветви роста 11-летнего цикла) и по формуле (3) (для ветви спада 11-летнего цикла)

^==0,92^lB+(l_1+0,04l^B+n_2 1 0,25-0,24ЙС+„_4 ; (2)

W?i%=.0,921FM+n-, + 0,04ИС+*-2 +0,25 W?+n-3 -0,24ttC+n_4 , (3)

где Wm+n и Wl+л — среднеквартальные числа Вольфа, отстоящие от минимума и максимума 11-

летнего цикла на п кварталов (для ветви роста п=1—17, для ветви спада п— 1—26).

Примечание Индексы (m+я) и (м+л) в уравнениях табл 1 и 2.

(2) и (3) соответствуют одному из индексов

Таблица 1

Расчет среднеквартальных чисел Вольфа для ветви роста 11-летнего цикла

Уравнение линейной регрессии для

Коэффициент

корреляции

г^кв

Среднее квадратическое отклонение

ст^кв

Уравнение линейной регрессии для

угКВ

Коэффициент

корреляции

'декв

Среднее квадратическое отклонение °j^KB

¥;в+1 = 1,08¥“ + 4

0,55

±4

прКВ

w т+\0 =

9-7

0,94

±17

¥ктв+2=1(Зб¥«в+,+3

0,70

±6

IwKB

w т-\-11 =

0,9б¥кД10+11

0,95

±17

~i^m+3 = 0.69 ¥“в+2+з

о,ш

±4

Tfkb

w т+12 =

l,29FKmB+11-2

0,97

±13

¥«B+4=l,08f™+3+5

0,71

±8

twKB

w m+13 =

1,09¥кД12-3

0,97

±10

¥«в+5 = 1,42Пв+4

0,89

±9

1.18¥KmB+13-8

0,96

±14

¥“+6==i,2o¥*b+5+6

0,92

±10

wm +15 —

0,92¥KmB+14+9

0,90

±11

^7=1.НПВ+6+7

0,90

±12

WKB

w m+16 =

M0¥*8+15-10

0,88

± 15

¥“+8=из¥*в+7+4

0,94

±12

IwKB

Wm+i7~

1.20W*mB+16 + l

0,97

±9

¥“в+9 = 0,Э8¥«в+8+12

0,91

±15

Таблица 2

Расчет среднеквартальных чисел Вольфа для ветви спада 11-летнего цикла

Уравнение линейной регрес сии для

wF

Коэффициент

корреляции

^ДО-КВ

Среднее квадратическое отклонение

°JpKB

Уравнение линейной регрессии для

wF

Коэффициент

корреляции

ггв

Среднее квадратическое отклонение

¥*!,_,=о,92'¥*в-13

0,96

±12

^м+14=0,67¥вв+13+8

0,89

±8

¥вв+2 = 0,86 1Гвв+1+4

0,95

±12

¥в;15 = 0,98¥*в+14-1

0,90

±9

П8+3 = 0,94¥‘-2+8

0,90

±18

¥“+16=Г“15

0,84

±14

Г£в+4=0,92Гвв+3+12

0,85

±22

■¥Км8+17=0,79\^в+16+4

0,86

±11

¥«в+5=0,Г2¥-4+21

0,82

±21

¥вв+18 = 0,74¥кмв+17+8

0,81

±11

¥*в+6 = 0,7б1С+5 + 12

0,78

±23

¥bb+19 = 0,65Wkmb+18+1

0,88

±8

w™7 =0,90¥-+s+4

0,87

±19

¥„+20= U0 ^м+19-2

0,96

±5

¥^8==0,80Г-7 + 12

0,91

±15

¥“+21=о,88Г*в+20-1

0,92

±6

¥£в+9 = о,эо¥“.8

0,92

±13

¥-22=о,84¥-+21+1

0,92

±6

¥“10=0,79¥'£в+9 + 6

0,92

±11

<2з = 0,7^22 + 1

0,83

±5

^+П = 0Д4 Гкмв+10 + Ю

0,77

±19

¥вв+24 =0.89 Г-23

0,85

±7

¥кв+12=0,82¥км!Н1+2

0,88

±14

¥“+25 =0,70¥км“+24

0,88

±6

^“18=0,7б¥мк;12

0,86

±12

¥“+26= 1,02 Fkmb+25

0,85

±7

2.1.4. Для коэффициента корреляции г^кв >0,8 окончательное значение числа Во'льфа вычисляют по формуле

3

(4)

где W** —среднеквартальное значение числа Вольфа, вычисленное по методам регрессий;

W™ —среднеквартальное значение числа Вольфа, вычисленное по модифицированному методу средних кривых. _

2.1.5. Для коэффициента корреляции г^-кв<0,8 значение вычисляют по формуле

WKB^W2B ■ (5)

2.2. Методика расчета среднегодовых чисел Вольфа внутри 11-летне-г о цикла

2.2.1. Для расчета среднегодовых чисел Вольфа внутри 11-летнего цикла в качестве исходных данных необходимо иметь Wm* и следующее за ним . __

2.2.2. Внутри 11-летнего цикла каждое последующее значение W101 вычисляют через предыдущее по уравнениям линейных регрессий, приведенным в табл. 3 (для ветви роста 11-летнего цикла) и табл. 4 (для ветви спада 11-летнего цикла). Рядом с уравнениями линейных регрессий приведены соответствующие им коэффициенты корреляции г^Г0Л, определяющие качество линейного приближения, и получаемые при этом средние квадратические отклонения сг^год.

Таблица 3

Расчет среднегодовых чисел Вольфа для ветви

Таблица 4

Расчет среднегодовых чисел Вольфа

роста 11-летнего цикла

Уравнение линейной регрессии для

Коэффициент

корреляции

A

Среднее квадратическое отклонение

°~год

W

*«+2 = 1,953 W£f,+I7

0,83

±13,8

1.592 F;oa2+6

0,97

±11,6

Примечание. Уравнение регрессии для не

приведено, так как для одних 11-летних циклов и Wm+4<Wm+3’ АЛЯ ДРУГИХ И -летних циклов W™4 >¥™А3

П7 г°л „ЯБГОД " ет+4 "м *

для ветви спада 11 -летнего цикла

Уравнение линейной регрессии для ^год

Коэффициент

корреляции

гй?год

Среднее квадратическое отклонение

а{ргод

1F^1=0,87 1Р™д—4

0,95

±10,3

*£,+2 = 0,90 ¥£« -8

0,93

±9,2

10 = 0.75^+2-3

0,94

±7,5

¥™4 = 0,76 ГУД-3

0,92

±7,1

¥^5 = 0,76^4-3

0,89

±7,8

¥^5 = 0,69 Пол5-4

0,91

±3,5

¥фф = 0;85 Пол6-3

0,98

±ы

2.2.3. Максимальное среднегодовое число Вольфа в 11-летнем цикле вычисляют по формуле

1,622(1^ -WXtx) ф 49; /-год =0,87; в^год = ф 15,8. (6)

2.2.4. Длину ветви роста 11-летнего цикла t* вычисляют по формуле

**= 18,4-7,Ulg^r; <* = ±0,3. (7)

2.3. Методика расчета среднегодовых чисел Вольфа на следующий 11-летний цикл

2.3.1. Для расчета среднегодовых чисел Вольфа на следующий 11-летний цикл необходимо в качестве исходных данных иметь Wmл' и tm.

2.3.2. В конце текущего 11-летнего цикла (в момент времени t'n ) вычисляют коэффициенты М и 5 по формулам:

М= 10(2Хр-10),

(=-1

где М — коэффициент, учитывающий изменение индекса геомагнитной активности;

(8)

(9)

jS_ — коэффициент, учитывающий изменение индексов геомагнитной и солнечной активностей; ^Кр — среднегодовое значение индекса геомагнитной активности 2КР в цикле, предшествующем прогнозируемому;

Mi и 1Г[—соответственно среднегодовые значения индекса М и числа Вольфа 1^10д для /-го года (/ = 0 относится к году минимума солнечной активности tm, а / = —1; —2; —3 соответст

венно за один, два и три года до года минимума солнечной активности следующего 11-летнего цикла).

2.3.3. Уравнения регрессий для расчета параметров следующего 11-летнего цикла с соответствующими коэффициентами корреляции г^тол, и средними квадратическими отклонениями охйггоя, приведены в табл. 5.

Таблица 5

Расчет параметров следующего И-летнего цикла

Уравнений peipeccm для

si»0*. W. м, wrM0A

Коэффициент корреляции

Среднее квадратическое

отклонение a

= 3,084 S +296,00

+0,90

±86,8

Г=0,337 5+22,90

+ 0,93

±7,8

/* = -2,251 lg 5+8,40

-0,91

±0,3

W™*! =0,434 5+40,85

4-0,89

±14,2

гмол =0,615 5+50,10

+0,95

±12,8

Продолжительность прогнозируемого цикла Т вычисляют по формуле

ш

W

(10)

2.3.4. Среднегодовое число Вольфа Wm+1 на ветви роста 11-летнего цикла определяют по табл, б, содержащей значения W Г0А, полученные на основе статистических данных за прошедшие 11-летние циклы. В табл. 6 приведено изменение №10Я внутри 11-летнего цикла через каждые полгода для разных значений W™x.

Таблица 6

Прогноз средних кривых 11 -летних циклов по заданным

Год от

^год

60

70

80

90

100

ПО

120

130

140

150

-5,0

4,0

3,0

2,5

2,0

1,5

-4,5

8,5

7,0

5,5

4,0

3,0

-4,0

16,0

13,0

10,5

8,0

6,0

5,0

4,0

3,0

2,5

2,0

—3,5

24,0

20,5

17,0

14,0

11,5

9,5

7,5

6,0

4,5

3,5

-3,0

33,5

29,5

26,0

22,5

19,5

17,0

15,5

14,0

13,0

12,0

-2,5

43,0

40,0

37,0

34,0

31,5

29,0

27,0

24,5

23,0

21,0

-2,0

45,5

46,5

46 ;б

4е;о

45,5

45,0

43,5

42,0

40,0

38,0

—1,5

48,5

52,0

55,0

57,5

59,5

61,0

62,0

63,0

63,5

63,5

—1,0

52,0

56,5

61,5

66,0

70,0

74,5

79,0

83,0

87,0

91,0

—0,5

56,0

63,0

70,0

77,0

84,5

92,5

101,0

110,0

119,5

129,0

0,0

60,0

70,0

so ;о

90,0

100,0

110,0

120,0

130,0

140,0

150,0

0,5

54,0

63,5

72,5

81,5

91,0

100,0

109,5

119,5

129,0

138,5

1,0

49,0

57,0

64,5

72,0

80,5

89,0

97,5

106,5

115,5

124,5

L5

43,5

51,0

59,0

67,0

74,5

82,0

90,0

97,5

105,0

113,0

2,0

34,5

43,0

51,5

59,5

67,0

74,5

81,5

88,0

95,0

101,5

2,5

24,5

33,0

41,5

49,5

57,0

64,0

70,5

77,0

83,0

89,0

3,0

19,0

26,0

33,0

39,5

46,0

52,0

58,0

64,0

69,5

75,0

3,5

15,5

,21,5

27,0

32,5

38,0

43,0

48,0

53,0

57,5

62,5

Продолжение табл. 6

Год от t„

м

«сд

60

70

80

90

100

ПО

120

130

но

150

4,0

11,5

17,5

23,0

28,5

33,5

37,5

42,0

46,0

49,5

53,5

4,5

5,5

11,5

17,5

23,0

27,5

31,5

35,0

38,0

41,0

44,0

5,0

3,0

7,5

11,5

15,5

19,5

23,0

26,0

29,0

31,5

34,5

5,5

1,5

4,5

7,0

9,5

12,5

15,5

18,0

21,0

24,5

27,5

6,0

8,5

11,0

13,5

16,0

18,5

21,5

12,0

14,5

7,5

10,0

Примечание. Точка 0,0 соответствует моменту времени t ы.

Циклы-аналоги, представляющие собой средние кривые 11-летних циклов, приведены на черт. 2, где At— интервал времени, отсчитываемый от момента времени tu, год.

2.3.5. Среднегодовые числа Вольфа для ветви роста 11-летнего цикла вычисляют по формулам, приведенным в табл. 3.

2.3.6. Среднегодовые числа Вольфа для ветви спада 1Ьлетнего цикла вычисляют по формулам, приведенным в табл. 4, используя вычисленное значение ИР™ .

3. ВАРИАЦИИ ИНДЕКСОВ СОЛНЕЧНОЙ АКТИВНОСТИ

3.1. Вариации индексов солнечной активности представляют сумму флуктуаций солнечной активности и вариаций за счет вероятностного характера связи между /под и W.

3.2. Флуктуации солнечной активности представляют непрогнозируемые апериодические колебания индексов солнечной активности относительно среднего хода 11-летнего цикла и учитывают в прогнозах солнечной активности в виде средних квадратических отклонений расчетных индексов.

Средние квадратические отклонения расчетных среднеквартальных чисел Вольфа а^ приведены в табл. 1 и 2.

Средние квадратические отклонения расчетных среднегодовых чисел Вольфа а^ГОд приведены в табл. 3 и табл. 4.

3.3. При баллистических расчетах ИСЗ с временем существования 13 менее 12 мес учитывают средние квадратические отклонения среднего значения числа Вольфа за интервал времени существования ИСЗ от среднегодового значения числа Вольфа сгд^с, приведенные в табл. 7. Закон распределения величины ЛИ7С принят нормальным с математическим ожиданием m(AWc ) =0.

Таблица 7

Время существования ИСЗ t ,

а

мес

1

О

3

4

5

6

7

12

122,4

18,2

15,5

13,4

11,8

1 Ю,5

[

U

0

3.4. Суммарные средние квадратические отклонения от расчетных среднегодовых чисел Вольфа °д^год вычисляют:

для t3 <1 года по формуле

°ДИ'год |/ ajpr(U “Н 1 (11)

для t3 > 1 года

3Д^Т0Д = 0уг°д • (12)

3.5. При определении индекса солнечной активности F ю,7 по формуле (1) следует учитывать вероятностную связь между Fюл и W, которую количественно характеризуют средним квадратическим отклонением наблюденных величин Fю,7 от их вычисленных значений Fwj

вд-=7}33- 10-22Вт/(м*-Гц).

3.6. Суммарные средние квадратические отклонения расчетных значений Fю,7 вычисляют по формуле

=VaXwvoA+*lr , (13)

где а = 0,895-10-22 Вт/(м2-Гц).

ПРИЛОЖЕНИЕ 1 Справочное

ТЕРМИНЫ, ПРИМЕНЯЕМЫЕ В НАСТОЯЩЕМ СТАНДАРТЕ, И ПОЯСНЕНИЯ К НИМ

Термин

Обозначение

Пояснение

Солнечная активность

Продолжительность 11-летнего цикла солнечной активности

Фазы солнечной активности

Т

Флуктуации солнечной активности

Индекс солнечной активности

Индекс геомагнитной активности

Квазшюгар|ифм1ический планетар- Кр

ный трехчаоовой индекс геомагнитной активности

Кдаэнлогарифммчбсшй планетар- 1КР

ный среднесуточный индекс геомагнитной! активности

Среднегодовой индекс геомагнитной активности

Мр

Планетарный ежесуточный индекс геомагнитной активности

ар

Планетарный среднегодовой индекс геомагнитной активности

Ар

Отклонение среднего числа Вольфа д W

Отклонение среднего индекса сол- д F нечной активности

Комплекс процессов, происходящих в атмосфере Солнца, оказывающих воздействие на межпланетное пространство и, в частности, на Землю

Продолжительность цикла солнечной активности составляет года

Фазы И-летнего цикла солнечной активности; минимум, рост, максимум и спад

Периодические колебания индексов солнечной активности, осред-ненных за месяц или несколько месяцев, относительно среднего хода 11-летнего цикла

Численная характеристика, дающая возможность количественно оценить состояние Солнца по какому-либо явлению, происходящему на нем, за определенный интервал времени

Численная характеристика, служащая для определения уровня геомагнитной возмущениости

Планетарный трехчасовой индекс геомагнитной активности, характеризующий возмущения магнитного поля Земли. Индекс выражают в баллах от 0 до 9 (шкала Кр — неравномерная квазилогарифмиче-ская)

Сумма восьми значений Кр за сутки

Жр~£ Кр (U)

1=1

Среднее арифметическое ежесуточных значений 2КР за год

_ 1 365

2^^ 365

Вычисляют по индексу ЪКр, в отличие от которого Ар является среднесуточной объективной характеристикой возмущения магнитного поля Земли с линейной шкалой и измеряется в единицах 2у (или 2 нТл)

Среднее арифметическое ежесуточных значений за год

_ 1 365

Ар^Ш {^Ар)(

Абсолютная величина отклонения среднего числа Вольфа от прогнозируемого значения

Абсолютная величина отклонения среднего индекса солнечной активности от прогнозируемого значения

(Измененная редакция, Изм. № 1).

ПРИЛОЖЕНИЕ 2 Справочное

ПРИМЕРЫ РАСЧЕТА ИНДЕКСОВ СОЛНЕЧНОЙ АКТИВНОСТИ ДЛЯ 21-го, 22-го и 23-го 11-ЛЕТНИХ ЦИКЛОВ

1. Расчет индексов солнечной активности текущего 21-го И-летнего цикла (1976—1987 гг.)

1.1. Конец ветви спада 20-ю 11-летнего цикла, а следовательно, начало 21-го 11-летнего цикла приходится на середину 1976 г., когда =12,6.

По методике, изложенной в разд 2 настоящего стандарта, проведен расчет среднегодовых индексов солнечной активности — И7Г0Д, р для 21-го 11-летнего цикла, значения которых приведены в таблице вместе с соответствующими отклонениями AF, вычисленных по формуле

, (1)

где о——среднее квадратическое отклонение, вычисляемое по формуле (13) настоящего стандарта

Индексы солнечной активности для 21-го 11-летнего цикла

Год

^г°д

F|0,7,U)“22 Вт/(м!-Гц)

Д F, 10~22 .Вт/(м*-Ги)

1976

#‘„?д=12,6

^ 10,7 «=72,5

±22

1977

Си=27,5

^10,7 ш-fl =

±22

1978

¥;„од2 =92,6

^ 10,7 m-j-2 = 144

±43

1979

^т°+з= 153.5

^ 10,7 т+3 = 198,5

±38,1

1980

1?"™д = 161,5

^10,7 м =206

±47,8

1981

^+1 =136>5

F ю,7 м-и = 183,5

±35,3

1982

1^+2=114,9

F 10,7 м+2 = 164

±33,1

1983

10=83,1

^ 10,7 м+з = 185,5

±29,8

1984

^+4=60,2

^ 10,7 м+4 “

±29,1

1985

П0,Д5=42,7

f 10.7 м+5 =="»5

±30,4

1986

1^+6 =25,5

^ 10,7 м±6 = 84

±24

1987

^1 г 2

ii

00

^ 10,7 м+7=78

±24,6

По формуле (7) настоящего стандарта вычисляем длину ветви роста 21-го 11-летнего цикла

/*=«2,6 (года).

Учитывая, что отклонение 6^* = 3io^ =1 году, максимум 21-го 11-летнего цикла наступит в конце 1979 — начале 1980 года с 710i7m=206-10-22±47,8'1O-22 Вт/(м2*Гц),

1.2. Изменение хода 21-го 11-летнего цикла вместе с соответствующими отклонениями от средней кривой представлено на черт. 1.

Для оценки точности сделанного расчета на том же чертеже представлен реальный ход 21-го 11-летнего цикла,

построенный по наблюденным сглаженным среднемесячным индексам , которые вычисляют для По месяца по фор муле

с>мес I рмес I гмес I гмес , г-мес рмес +М + 1+М-И

--=-—- .

1 — прогнозируемые значения F Ю*7 и

2 — предельные значения прогнозируемых F iot7 и 1Ггол:

3 —наблюденные (среднемесячные сглаженные значения).

Черт. 1

2 РАСЧЕТ ИНДЕКСОВ СОЛНЕЧНОЙ АКТИВНОСТИ ДЛЯ 22-го (1987-1998 гг.) И 23-го (1998-2009 гг.) 11-ЛЕТНИХ ЦИКЛОВ

2 1 При проектировании ИСЗ, запуск и эксплуатацию которых планируют в 22-м и 23-м U-латиих циклах, максимальные среднегодовые числа Вольфа КТ ял* ^ П-Летнего Цикла рассчитывают с учло»

(80"-&0 лет) цикла иэкемюя индексов солнечной активности, для выделений экстремумов которого прим сглаживания по четырем точкам. Сглаженные значения W вычисляют по формуле

1»7 гол

где i — номер 11-летнего цикла. _

Изменения величин Г$д и 1Г$А (4) по U-летним циклам приведены на черт. 2,

О)

Тогда для Ш^го 1Ьлетнего цикла — =93,

для 23-го 11-летнего цикла — =126.

“"ГОД

Вычисление значений W внутри 22-го и 23-го 11-летних циклов солнечной активности для ветвей роста

и спада проводят по средним кривым 11-летних циклов, приведенным в табл. 6 настоящего стандарта, используя вычисленные WrM°22 и WTUдз.

iffm

1 — ^ (измерения); 2—1Ггод ^ (прогноз); <?—1РГ0Д (измерения); 4 — 1РГ0Д (прогноз)

М МММ

Черт, 2

ПРИЛОЖЕНИЕ 3 Справочное

СРЕДНИЕ ЗНАЧЕНИЯ ИНДЕКСОВ ГЕОМАГНИТНОЙ АКТИВНОСТИ

При баллистических расч!етах ИСЗ для различных фаз солнечной активности: минимума, роста, максимума и спада 11-летнего цикла значения индексов геомагнитной активности принимают средними в зависимости от фиксированного уровня солнечной активности Fq в соответствии с таблицей.

Фиксированный

Фаза солнечной активности

уровень солнечной

Минимум

Рост

Максимум

(-.пад

активности

—22

F0, 10 -Вт/(м2 Гц)

*кп

ЛР

л

s/s

лр

65

12

2,667

_

1

75

10

2,333

10

2,333

—■

15

3,000

100

_,

_,

11

2,667

—,

17

3,333

125

___

__

13

3,000

12

2,667

17

3,333

150

___

_

14

3,000

13

3,000

17

3,333

175

—*

_,

18

3,333

17

3,333

19

3,333

200

___,

19

3,333

19

3,333

21

3,667

225

___

20

3,667

20

3,667

20

3,667

250

20

3,667

275

—“■

—1

“*

20

3,667

ПРИЛОЖЕНИЕ 4 Справочное

ИЗМЕНЕНИЕ ИНДЕКСОВ СОЛНЕЧНОЙ И ГЕОМАГНИТНОЙ АКТИВНОСТИ

ЗА ВЕСЬ ПЕРИОД НАБЛЮДЕНИЙ

Для сравнения и анализа условий полета ИСЗ приведены статистические данные об изменении индексов солнечной и геомагнитной активностей за все время наблюдений.

Значения среднекварталъных и среднегодовых наблюденных чисел Вольфа приведены в табл. 1, а кривая изменения Wro,x представлена на черт. 1.

Значения среднеквартальных и среднегодовых наблюденных индексов F10t7 за период 1958—1991 гг. приведены в табл. 2, а кривая изменения Fl0j представлена на черт. 2.

Значения среднегодовых индексов геомагнитной активности Ар и 2КР за период 1932—1981 гг. приведены

в табл. 3.

Таблица 1

Среднеквартальные и среднегодовые наблюденные числа Больфа

Год

год

I

II

Ш

IV

1749

63,5

74,7

79,0

106,4

80,9

1750

79,5

92,8

93,2

68,1

83,4

1751

52,9

55,9

49,9

31,9

47,7

1752

52,0

52,9

48,3

41,4

47,8

1753

40,6

36,6)

29,7

17,2

30,7

1754

1,6

20,4

13,1

13,8

12,2

w

кв

Год

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787 17818

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800 1801 1802

1803

1804

1805

1806

1807

1808

1809

1810 1811 1812

1813

1814

1815

1816

1817

1818

1819

1820 1821 1822

1823

1824

I

9.4

8.3

20.5

46.2

46.4

67.2

80.6

54.1

40.7

53.2

25.0 19,9

33.5

55.3

67.5

108.9

43.0

74.3

43.9

56.0

5.3

13.2

40.2

140.2 132,6

88.7

75.5

42.8

31.1 10,7

7.8

44.2 109,4

136.8

119.8

108.9

69.6

61.7

55.5

42.7

24.6 20,5

7.5

6,1

12,0

10,0

28.7

45.2

43.4

47.2

52.2

33.8

11.3

1.5

5.8 0,0 0,0

4.6 4,1

13.3

25.9

56.3

63.5

29.0

19.0

16.8

10.5

5.7 0,2 10,8

п

2,2

11,6

27.0

54.6

48.7

59.5

92.7

59.1

33.8

36.2

20.7

11.9

32.0

65.9

88.2

68.1

112.4 62,4

34.1

40.9

9.1 17,3

82.2

185.2 132,9

96.7

90.2

44.8

28 у8

8,7

20.9

78.9

120.4 125,6

122.3

92.7

71.7

66.2

52.1

41.9

22.2

19.8

7.5 0,4

9.1

9.6

31.4

44.0

35.1

39.9

39.0

26.6

15.3

13.1

4.1 0,0 0,0 0,8

Н,1

14.8

32.4

48.9

29.2

41.3 2(4,9 19,8

4.2 6,9 0,0 7,4

III

9.9

7.3 38,7

48.4

66.5

67.6

95.3

56.7

49.6

29.4

24.2

3.9

35.1

64.7

129.2

113.5 75,9

61.3

23.2

10.7

4.0

13.7

107.7

154.9

122,0

88.5

63.5

38.3

23.4

8.7

29.4

94.7

140.8

139.5 110,7

77.9

60.2

54.9

37.8 30,7

17.4

15.6

5.3

1.8

0,7

17.3

35.7

49.9

42.6

42.0

41.6

26.8

10.1 8,8 0,3 0,0

3.0

7.1

14.0 9,6

38.1

36.6

43.9

28.5

24.1

17.2 3,9

3.3

0,2

7.3

IV

16,8

13.6

43.6 41,4

54.3

57.1

72.8

74.8

56.2

26.6

13.7

10,0

50.7

93.4

139.5

112.7

35.1

67.7 36$

14.6

9.5

35.0

136.6

137.2

116.0

65.2

43.2

28.2

11.2

13.0

38.2

113.7 157,5 122,1

119.7

80.1

64.9

57.3

45.6

49.1

20.8 8,2

5.2

8,0

5.3

20,0

40.2

41.0

51.1

61.1

36.2

25.3

3.5

9.2 0,0 0,0

2.7

7.3

19.6 18.0 45,2

41.5

27.6 22$

27.7 8,9

7.7

0,1

6.8

8,7

9$

10,2

32.4

47.6

54.0

62.9

85.9 61,2

45.1

36.4

20.9 П,4

37.8

69.8

106.1

100.8

81.6

66.5

34.8

30.6

7.0

19.8

92.5 154,4

125.9

84.8

68,1

38.5

22.8 10,2 24,1

82.9

132.0

130.9

118.1

89.9

66.6

60.0

46.9

41.0

21.3

16.0

6.4

4.1

6,8

14.5

34.0

45.0

43.1

47.5

42.2 28,1 Ю,1

8.1

2.5

0,0

1.4

5.0

12.2

13.9

35.4

45.8 41,1

30.4

23.9 15,7

6.6

4.0

1,8

8.5

Год

»'год

1

II

ш

IV

1825

14,3

11,5

24,0

18,4

16,6

Ш26

10,9

31,2

37,0

52,7

36,3

1827

46,6

53,0

48,7

50,5

49,7

1828

60,7

82,7

60,4

46,2

62,5

1829

54,9

78,8

74,0

60,4

67,0

1830

69,6

79^5

52,2

82,6

71,0

1831

63,7

42,0

46,0

39,5

47,8

1832

47,2

31,6

10,3

21,0

27,5

1833

12,7

5,6

8,1

7,8

8,5

11834

9,0

6,0

8,1

29,9

»ЗД

1835

17,2

46,1

73,2

90,9

56,9

Ш36

98,1

126,3

106,5

154,8

121,5

1837

166,1

135,8

131,0

120,2

138,3

1838

Ш.5

119,6

86,9

82,3

103,2

1839

95,9

56,7

116,2

74,4

85,8

1840

74,8

61,2

64,2

52,6

63,2

1841

27,9

55,2

35,1

29,0

36,8

1842

21,4

24,1

19,2

32,1

24,2

1843

8,4

13,5

8,5

12,4

10,7

1844

12,6

12,2

17,3

17,9

15,0

1845

37,5

45,3

30,8

46,6

40,1

1846

542

64,7

69,5

60,6

61,5

1847

64,4

68,5

118,0

143,0

98,5

1848

126,6

111,0

124,0

135,6

124,3

1849

128,3

8)8,1

77,7

89,4

95,9

1850

83,3

58,6

62,3

61,9

66,5

1851

81,8

60,8

53,8

61,6

64,5

1852

65,7

55,7

39,7

55,7

54,2

1853

40,6

40,8

43,3

31,8

39,0

1854

18,7

23,8

19,0

20,8

20,6

1855

13,7

6,3

1,2

5,7

6,7

1856

1,9

3,8

5,0

6.5

4,3

1857

8,в

18,8

27,2

36.4

22,8

1858

43,5

41,4

64,0

70,0

54,8

1859

87,2

87,9

102,6

97,6

93,8

1860

89,5

95,7

103,1

94,5

95,7

1861

80,4

81,0

80,1

67,1

77,2

1862

57,1

67,4

67,5

47,8

59,1

1863

57,1

45,1

34,3

39,6

44,0

1864

57,0

44,7

46,0

40,0

47,0

1865

42,5

32,5

38,7

18.2

30,5

1866

31,5

15,7

9,8

8,2

16,3

1867

3.3

3,2

6,6

16,0

7,3

1868

19,3

31,5

35,6

62,8

37,3

1869

57,6

84,5

73,1

80,4

73,9

1870

пт, г

157,2

140,7

141,3

139,1

1871

118,9

133,2

97,а

94,9

111,2

1872

96,0

106,5

104,3

99,8

101,7

1873

97,3

56,3

60,9

50,7

66,3

1874

57,1

ща

52,7

30,8

44,7

1875

23.5

21,5

9,8

13,4

17,1

1876

20,2

3,0

11,3

10.8

11,3

1877

12,9

16,8

9,5

7,8

12,3

1878

5,7

4,1

1,8

1,9

3,4

1879

0,5

4,5

8,1

10,8

6,0

1880

23,7

25,6

45,3

34,4

32,3

1881

47,0

51,9

62,7

55,4

54,3

1882

60,6

68,4

47,8

61,8

59,7

1883

50,1

63,6

59,7

81,4

63,7

1884

88,4

64,6

56,9

43,9

63,5

1885

54,8

70,6

52,0

31,6

52,2

1 ш

37.7

33,8

22,9

7,1

25,4

1887

9.2

9,0

17,4

11,4

13,1

1888

9,2

6,4

4,9

6,5

6,8

1889

5,4

4.4

12,3

3,0

6,3

1890

3,7

2,6

12,4

9,5

7,1

1891

15,4

36,6

48,6

41,9

35,6

1892

64,9

75,2

80,3

71,5

73,0

1893

71,2

87,0

98,6

82,9

84,9

1894

73,4

93,9

80,7

64,0

78,0

1895

63,8

72,0

58,1

61,9

64,0

Продолжение табл. 1

Год

№'КВ

ГОД

I

п

III

IV

1896

46,1

40;2

44,5

36,3

41,8

1897

33,0

20,8

32,5

18,7

26,2

1*898

35,0

20,9

25,1

26,0

26,7

1899

15,6

14,1

8,3

10,4

12,1

1900

10,5

14,4

7,0

5,9

9,5

1901

2,4

5,3

0,8

2,5

2,7

1902

5,9

1,4

3,6

9,2

5,0

1903

12,9

19,0

22,6

43,0

24,4

1904

31,1

41,5

46,3

48,9

42,0

1905

65,7

45,4

62,3

80,5

63,5

1906

47,1

58,7

69,0

40,5

53,8

1907

81,8

45,3

63,0

58,1

62,0

1908

33,9

46,8

72,3

39,1

48,5

1909

56,5

30,3

32.6

56,1

43,9

1910

26,4

14,3

17,3

16,3

18,6

1911

6J

9,2

3$

3,0

5,7

1912

1,7

4,3

4,3

4,0

3,6

1913

1,9

0,3

1,0

2,5

1,4

1914

2,8

11,3

8,6

15,6

9,6

1915

34,7

47,7

63,6

43,5

47,4

1916

55,9

71,3

44,6

56,4

57,1

1917

80,5

101,2

134,6

99.3

103,9

1918

77,8

72,2

96,4

75,9

80,6

1919

64,7

83,7

62,8

43,2

63.6

1920

58,4

29,9

27,7

35,6

37,6

1921

28,8

29,4

27,5

18,8

26,1

1922

31,0

8,3

7,4

10,4

14,2

1923

3,1

6.1

5,7

8,1

5.8

1924

2,3

18,7

24,2

21,5

16,7

1925

15,6

40,7

45,5

75,5

44,3

1926

68,1

58,8

58,2

70.5

63,9

1927

81,4

77,2

59,0

58,5

69,0

1928

80,8

83,0

90,5

56,9

77,8

1929

61,1

61,0

56,8

81,0

65,0

1930

49,8

34,6

26,3

31,9

35,7

1931

29,2

23,7

16,5

15,5

21,2

1932

11,3

17,1

6.8

9,4

ил

1933

14,9

3,8

2,7

1,3

5,7

1934

5,2

12,6

7,2

9,9

8,7

1935

20,8

28,4

35,4

59,6

36t,l

1936

71,4

66,5

71,8

109,3

79,7

1937

115,0

116,8

1127,8

96,0

114,4

1938

101,4

108,6

123,5

104,7

109,6

1939

74,1

109,5

105,3

66,1

88,8

1940

64,4

66,3

79,8

60,6

67,8

1941

45,5

40,7

64,3

39,4

47,5

1942

47,5

32,4

18,4

24,1

30,6

1943

22,9

15,9

14,2

12,3

16.3

1944

5,1

2,6

12,0

18,7

9,6

1945

17,6

32.9

34.5

47.4

33.2

1946

70,1

78.0

105,9

115,9

92,6

1947

126,3

171,7

172,0

136.0

151,6

19^8

96,5

177,2

147,8

126,7

136,2

1949

153,0

125.0

131,6

130,9

135,1

1СКП

102,0

101,1

75,8

56,8

83,9

1 1

55,2

100,7

68,5

49,9

69,4

1952

28,5

29,6

40.8

26,7

31.4

1953

13,5

20,7

17,1

4,1

13,9

1954

3,9

0,9

4,9

7,9

4,4

1955

16,3

24,0

36,7

74,9

38,0

1956

105,3

121,3

157,3

182,9

141,7

1957

150,9

180,2

193,7

234,7

189,9

1958

189,4

180,9

197,6

173,8

184,8

1959

182,1

168,0

164,8

120.1

159,0

1960

118,2

117,3

127,7

86,0

112.3

1961

52,3

63,3

63,2

36.7

53,9

1962

44,9

44,0

31.6

29,9

37,5

1963

30,4

36,1

30,5

24,5

27,9

1964

16,5

9,1

5,7

9,5

10,2

1965

14,4

15,6

12,5

17,6

15.1

1966

26,0

47,2

52,7

61,6

47,0

Год

Wa

да, год

I

II

III

IV

1967

105,4

74,4

91,8

103,0

93,8

1968

108,6

106,2

107,5

101,2

105,9

1969

120,2

110,9

95,4

95,7

105,5

1970

114,1

114,6

101,7

88,4

104,7

1971

77,0

59,7

64,2

65,7

66,6

1972

76,6

80,2

72,4

49,4

68,9

1973

44,1

46,5

36,0

26,0

38,1

1974

25,0

38,5

43,2

30,8

34,4

1975

14,0

8,5

27,2

12,1

15,5

1976

11,4

14,5

10,5

13,8

12,6

1977

16,0

23,3

31,8

38,7

27,5

1978

74,0

92,5

88,9

115,2

92,6

1979

147,3

128,5

163,3

181,9

155,6

1980

146,9

167,1

142,5

162,3

154,6

1981

130,6

124,0

166,9

148,3

142,5

1982

142,8

104,8

170,8

106,4

114,9

1983

67,3

90,3

68,1

40,8

66,6

1984

75,3

64,1

26,2

17,8

45,9

1985

14,8

22,6

15,2

17,3

17,5

1986

13,6

11,1

9,7

19,8

13,6

1987

7,7

18,9

27,8

44,4

24,7

1988

58,4

83,3

И 5,2

141,5

99,6

1989

152,0

155,1

157,5

156,0

155,2

1990

149,4

126,0

157,2

135,5

142,0

1991

148,8

143,7

158,3*

150,0*

1992

75,0*

1993

55,0*

1994

37,0*

1995

22,0*

Примечания:

1. Значения, отмеченные знаком *, — прогнозируемые.

2. Значения И^запериод 1749—1980 гг. получены обсерваторией в Цюрихе (Швейцария), ас 1981 г. — Бельгийской Королевской обсерваторией в Уккле.

Таблица 2

Среднеквартальные и среднегодовые наблюденные значения индекса солнечной активности F\o,7

Год

Среднеквартальные /*10,7» Ю 22 ■ ВтДм2 - Гц)

Среднегодовые Яо,7, ИГ22 • Вт/(м2 • Гц)

1

II

Ш

IV

1958

236,1

228,8

234,6

222,4

230,5

1959

235,3

213,4

210,3

175,5

208,6

1960

171,6

163,9

167,4

141,2

161,0

1961

110,0

104,7

111,7

92,9

104,8

1962

98,0

94,9

82,8

83,5

89,8

1963

78,3

83,4

80,6

80,8

80,8

1964

75,3

70,3

68,7

74,4

72,2

1965

75,3

75,7

75,0

77,7

75,9

1966

87,3

97,3

108,0

115,5

102,0

1967

150,1

131,0

142,0

148,3

142,8

1968

168,3

142,2

140,1

146,5

149,3

1969

160,0

154,4

138,9

151,4

151,2

1970

163,5

161,8

144,5

154,4

156,0

Продолжение табл. 2

Год

Среднеквартальные Fio,7, 10 22 ■ ВтДм2 ■ Гц)

Среднегодовые F\oj, 1(Г22 • ВтДм2 ■ Гц)

1

и

111

IV

1971

137,4

109,4

111,8

115,2

118,5

1972

128,4

126,0

120,5

108,5

120,8

1973

100,4

97,8

91,0

84,5

93,4

1974

81,0

97,6

87,6

89,6

86,5

1975

74,7

71,6

84,3

75,5

76,5

1976

72,4

73,9

73,4

73,7

73,3

1977

77,0

84,7

90,3

95,6

86,9

1978

129,4

149,0

136,3

164,4

144,8

1979

201,5

175,7

183,1

221,4

195,5

1980

196,3

212,8

180,6

220,6

202,7

1981

196,9

195,6

210,0

215,1

204,4

1982

201,7

160,8

171,1

178,0

177,9

1983

128,9

131,8

120,6

100,4

120,4

1984

125,8

118,5

83,1

75,8

100,8

1985

74,3

77,7

73,6

75,3

75,2

1986

78,8

72,3

69,5

78,5

74,8

1987

74,0

84,6

86,7

99,0

86,1

1988

110,4

126,6

155,9

181,2

143,5

1989

220,5

210,3

210,8

222,7

216,1

1990

194,6

180,6

193,1

192,2

190,1

1991

233,3

188,4

199,9

198,8

205,1

1992

218,0

125,0*

1993

110,0*

1994

92,0*

1995

80,0*

w™

Черт. 1

Черт. 2

Таблица 3

Среднегодовые индексы геомагнитной активности

Год

Год

1932

11,4

2,666

1957

20,1

3,666

1933

10,1

2,333

1958

19,3

3,666

1934

7,2

2,000

1959

21,3

3,666

1935

8,9

2,333

1960

23,6

3,666

1936

9,1

2,333

1961

14,4

3,000

1937

12,4

2,666

1962

12,3

2,666

1938

15,2

3,000

1963

12,4

2,666

1939

16,5

3,333

1964

9,9

2l,33l3i

1940

16,1

3,000

1965

7,7

2,000

1941

16,8

3,333

1966

10,3

2,333

1942

13,8

3,333

1967

11,9

2,666

1943

16,9

3,333

1968

13,6

3,000

1944

10,8

2,666

1969

11,4

2,333

1945

10,4

2,333

1970

11,9

2,333

1946

18,6

2,333

1971

11,3

2,666

1947

18,7

3,333

1972

12,6

2,666

1948

15,4

3,000

1973

16,9

3,333

1949

15,3

3,000

1974

19,6

3,666

1950

18,0

3,333

1975

13,9

3,000

1951

22,3

3,666

1976

12,7

2,666

1952

21,2

3,666

1977

11,7

2,666

1953

15,7

3,000

1978

16,9

3,209

1954

11,0

2,666

1979

14,6

2,956

1955

11,3

2,666

1980

ид

2,566

1956

18,1

3,333

1981

16,3

3,144

ПРИЛОЖЕНИЕ 4. (Измененная редакция, Изм. №1).

ИНФОРМАЦИОННЫЕ ДАННЫЕ

1. РАЗРАБОТЧИКИ

Ю.И. Витинский, канд. физ.-мат. наук; Е.А. Зайцев; Е.А. Карпов; В.А. Модестов, канд. техн. наук; А.И. Оль, канд. физ.-мат. наук; И.Г. Пыхова

2. СОГЛАСОВАНО С ГОСУДАРСТВЕННОЙ СЛУЖБОЙ СТАНДАРТНЫХ СПРАВОЧНЫХ ДАННЫХ (протокол от 10 августа 1983 г. № 26)

3. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 8 сентября 1983 г. № 4158

4. ВВЕДЕН ВПЕРВЫЕ

5. ПЕРЕИЗДАНИЕ (август 1997 г.) с Изменением № 1, утвержденным в августе 1992 г. (ИУС 11—92)

Редактор Л.В. Афанасенко Технический редактор О.Н.Власова Корректора.С Черноусова

Изд. лиц. №021007 от 10.08.95. Подписано в печать 23.09.97. Уел. печ. л. 2,33. Уч -изд. л. 2,00.

Тираж 113 экз. С945. Зак. 148.

ИПК Издательство стандартов, 107076, Москва, Колодезный пер , 14 Отпечатано в ИПК Издательство стандартов